description: Evaluate VAE on Yelp Dataset auth: # which virtual cluster you belong to (msrlabs, resrchprojvc6, etc.). Everyone has access to "pnrsy". vc: msrlabs # physical cluster to use (cam, gcr, rr1) or Azure clusters (eu1, eu2, etc.) # cluster: rr2, eu2, eu1 et1 cluster: eu2 # docker environment (vm) in which your job will run. we provide "generic" dockers # with the main deep learning toolkit installed (PyTorch, TF, Chainer, etc.) docker: # image: philly/jobs/custom/generic-docker:py27 # registry: phillyregistry.azurecr.io image: chunyl/pytorch-transformers:v0 registry: index.docker.io storage: _default: #use_phillyfs: True storage_account_name: textae container_name: bigtextae mount_path: /mnt/_default code: # local directory of the code. this will be uploaded to the server. # $CONFIG_DIR is expanded to the directory of this config file code_upload: False remote_dir: code/ local_dir: $CONFIG_DIR/code #data: # data upload is not required for this example #data_upload: False search: job_template: name: exp_{experiment_name:s}_{bs_option:.0f}_b_{beta_option:.2f} sku: G1 # G4 # G1 command: - pip install --user --editable . - pip install --user azure - pip install --user tqdm - python examples/big_ae/run_lm_vae_pretraining.py --use_philly --beta {beta_option} --dim_target_kl {dim_target_kl_option} --gloabl_step_eval 8334 --dataset Yelp --per_gpu_train_batch_size {bs_option} --per_gpu_eval_batch_size 1 --output_dir ../output/philly_vae_yelp_b{beta_option}_d{dim_target_kl_option}_r0{ratio_zero_option}_ra{ratio_increase_option} --encoder_model_type bert --encoder_model_name_or_path bert-base-cased --decoder_model_type gpt2 --decoder_model_name_or_path gpt2 --train_data_file ../data/datasets/yelp_data/train.txt --do_eval --eval_data_file ../data/datasets/yelp_data/test.txt --overwrite_output_dir --save_steps 1000 --logging_steps 100 max_trials: 20 type: grid params: - name: bs_option spec: discrete values: [4] # [top,bottom] # - name: beta_option # spec: discrete # values: [0.25,1.0] # [top,bottom] # - name: dim_target_kl_option # spec: discrete # values: [0.5,1.0,2.0] # [top,bottom] - name: beta_option spec: discrete values: [0.25,1.0] # - name: dim_target_kl_option spec: discrete values: [0.01,0.05,0.1,0.25] # - name: ratio_zero_option spec: discrete values: [0.5] # - name: ratio_increase_option spec: discrete values: [0.25] #