File size: 12,864 Bytes
6ec7105
 
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
3f6ce08
 
 
 
6ec7105
3f6ce08
6ec7105
 
 
3f6ce08
 
 
 
 
 
6ec7105
 
 
 
 
 
 
 
 
 
 
3f6ce08
 
 
6ec7105
 
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
3f6ce08
 
 
 
 
6ec7105
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
3f6ce08
6ec7105
3f6ce08
 
6ec7105
3f6ce08
 
 
6ec7105
3f6ce08
 
 
6ec7105
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
 
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
3f6ce08
 
 
6ec7105
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
3f6ce08
6ec7105
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
 
3f6ce08
 
 
6ec7105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6ce08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7105
 
 
 
 
 
 
 
3f6ce08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import uvicorn
import sys
import os
import io
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import time
import json
from typing import List
import torch
import logging
import string
import random
import base64
import re
import requests
from utils.enver import enver
import shutil
import tempfile
import numpy as np


from fastapi import FastAPI, Response, File, UploadFile, Form
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from utils.logger import logger
from networks.message_streamer import MessageStreamer
from messagers.message_composer import MessageComposer
from googletrans import Translator
from io import BytesIO
from gtts import gTTS
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
from tempfile import NamedTemporaryFile

class ChatAPIApp:
    def __init__(self):
        self.app = FastAPI(
            docs_url="/",
            title="HuggingFace LLM API",
            swagger_ui_parameters={"defaultModelsExpandDepth": -1},
            version="1.0",
        )
        self.setup_routes()

    def get_available_langs(self):
        f = open('apis/lang_name.json', "r")
        self.available_models = json.loads(f.read())
        return self.available_models

    class TranslateCompletionsPostItem(BaseModel):
        from_language: str = Field(
            default="en",
            description="(str) `Detect`",
        )
        to_language: str = Field(
            default="fa",
            description="(str) `en`",
        )
        input_text: str = Field(
            default="Hello",
            description="(str) `Text for translate`",
        )
   

    def translate_completions(self, item: TranslateCompletionsPostItem):
        translator = Translator()
        f = open('apis/lang_name.json', "r")
        available_langs = json.loads(f.read())
        from_lang = 'en'
        to_lang = 'en'
        for lang_item in available_langs:
          if item.to_language == lang_item['code']:
              to_lang = item.to_language
              break
              
          
        translated = translator.translate(item.input_text, dest=to_lang)
        item_response = {
            "from_language": translated.src,
            "to_language": translated.dest,
            "text": item.input_text,
            "translate": translated.text
        }
        json_compatible_item_data = jsonable_encoder(item_response)
        return JSONResponse(content=json_compatible_item_data)

    def translate_ai_completions(self, item: TranslateCompletionsPostItem):
        translator = Translator()
        #print(os.getcwd())
        f = open('apis/lang_name.json', "r")
        available_langs = json.loads(f.read())
        from_lang = 'en'
        to_lang = 'en'
        for lang_item in available_langs:
          if item.to_language == lang_item['code']:
              to_lang = item.to_language
          if item.from_language == lang_item['code']:
              from_lang = item.from_language

        if to_lang == 'auto':
            to_lang = 'en'

        if from_lang == 'auto':
            from_lang = translator.detect(item.input_text).lang
            
        if torch.cuda.is_available():
            device = torch.device("cuda:0")
        else:
            device = torch.device("cpu")
            logging.warning("GPU not found, using CPU, translation will be very slow.")

        time_start = time.time()
        #TRANSFORMERS_CACHE
        pretrained_model = "facebook/m2m100_1.2B"
        cache_dir = "models/"
        tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
        model = M2M100ForConditionalGeneration.from_pretrained(
            pretrained_model, cache_dir=cache_dir
        ).to(device)
        model.eval()

        tokenizer.src_lang = from_lang
        with torch.no_grad():
            encoded_input = tokenizer(item.input_text, return_tensors="pt").to(device)
            generated_tokens = model.generate(
               **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(to_lang)
            )
            translated_text = tokenizer.batch_decode(
            generated_tokens, skip_special_tokens=True
            )[0]

        time_end = time.time()
        translated = translated_text
        item_response = {
            "from_language": from_lang,
            "to_language": to_lang,
            "text": item.input_text,
            "translate": translated,
            "start": str(time_start),
            "end": str(time_end)
        }
        json_compatible_item_data = jsonable_encoder(item_response)
        return JSONResponse(content=json_compatible_item_data)

    class TranslateAiPostItem(BaseModel):
        model: str = Field(
            default="t5-base",
            description="(str) `Model Name`",
        )
        from_language: str = Field(
            default="en",
            description="(str) `translate from`",
        )
        to_language: str = Field(
            default="fa",
            description="(str) `translate to`",
        )
        input_text: str = Field(
            default="Hello",
            description="(str) `Text for translate`",
        )    
    def ai_translate(self, item:TranslateAiPostItem):
        MODEL_MAP = {
        "t5-base": "t5-base",
        "t5-small": "t5-small",
        "t5-large": "t5-large",
        "t5-3b": "t5-3b",
        "mbart-large-50-many-to-many-mmt": "facebook/mbart-large-50-many-to-many-mmt",
        "nllb-200-distilled-600M": "facebook/nllb-200-distilled-600M",
        "madlad400-3b-mt": "jbochi/madlad400-3b-mt",    
        "default": "t5-base",
        }
        if item.model in MODEL_MAP.keys():
            target_model = item.model
        else:
            target_model = "default"

        real_name = MODEL_MAP[target_model]
        read_model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
        tokenizer = AutoTokenizer.from_pretrained(real_name)
        #translator = pipeline("translation", model=read_model, tokenizer=tokenizer, src_lang=item.from_language, tgt_lang=item.to_language)
        translate_query = (
            f"translation_{item.from_language}_to_{item.to_language}"
        )
        translator = pipeline(translate_query)
        result = translator(item.input_text)    
           
        item_response = {
            "statue": 200,
            "result": result,
            }
        json_compatible_item_data = jsonable_encoder(item_response)
        return JSONResponse(content=json_compatible_item_data)
    class DetectLanguagePostItem(BaseModel):
        input_text: str = Field(
            default="Hello, how are you?",
            description="(str) `Text for detection`",
        )

    def detect_language(self, item: DetectLanguagePostItem):
        translator = Translator()
        detected = translator.detect(item.input_text)

        item_response = {
            "lang": detected.lang,
            "confidence": detected.confidence,
        }
        json_compatible_item_data = jsonable_encoder(item_response)
        return JSONResponse(content=json_compatible_item_data)
        
    class TTSPostItem(BaseModel):
        input_text: str = Field(
            default="Hello",
            description="(str) `Text for TTS`",
        )
        from_language: str = Field(
            default="en",
            description="(str) `TTS language`",
        )
        
    def text_to_speech(self, item: TTSPostItem):
        try:
            audioobj = gTTS(text = item.input_text, lang = item.from_language, slow = False)
            fileName = ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(10));
            fileName = fileName + ".mp3";
            mp3_fp = BytesIO()
            #audioobj.save(fileName)
            #audioobj.write_to_fp(mp3_fp)
            #buffer = bytearray(mp3_fp.read())
            #base64EncodedStr = base64.encodebytes(buffer)
            #mp3_fp.read()
            #return Response(content=mp3_fp.tell(), media_type="audio/mpeg")
            return StreamingResponse(audioobj.stream())
        except:
               item_response = {
                 "status": 400
               }
               json_compatible_item_data = jsonable_encoder(item_response)
               return JSONResponse(content=json_compatible_item_data)
           
        
    def setup_routes(self):
        for prefix in ["", "/v1"]:
            self.app.get(
                prefix + "/langs",
                summary="Get available languages",
            )(self.get_available_langs)

            self.app.post(
                prefix + "/translate",
                summary="translate text",
            )(self.translate_completions)

            self.app.post(
                prefix + "/translate/ai",
                summary="translate text with ai",
            )(self.translate_ai_completions)
            
            self.app.post(
                prefix + "/detect",
                summary="detect language",
            )(self.detect_language)

            self.app.post(
                prefix + "/tts",
                summary="text to speech",
            )(self.text_to_speech)


class ArgParser(argparse.ArgumentParser):
    def __init__(self, *args, **kwargs):
        super(ArgParser, self).__init__(*args, **kwargs)

        self.add_argument(
            "-s",
            "--server",
            type=str,
            default="0.0.0.0",
            help="Server IP for HF LLM Chat API",
        )
        self.add_argument(
            "-p",
            "--port",
            type=int,
            default=23333,
            help="Server Port for HF LLM Chat API",
        )

        self.add_argument(
            "-d",
            "--dev",
            default=False,
            action="store_true",
            help="Run in dev mode",
        )

        self.args = self.parse_args(sys.argv[1:])


app = ChatAPIApp().app

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
@app.post("/transcribe")
async def whisper_transcribe(
    audio_file: UploadFile = File(description="Audio file for transcribe"),
    language: str = Form(),
    model: str = Form(),
):
    MODEL_MAP = {
        "whisper-small": "openai/whisper-small",
        "whisper-medium": "openai/whisper-medium",
        "whisper-large": "openai/whisper-large",   
        "default": "openai/whisper-small",
    }
    AUDIO_MAP = {
        "audio/wav": "audio/wav",
        "audio/mpeg": "audio/mpeg",
        "audio/x-flac": "audio/x-flac",   
    }
    item_response = {
            "statue": 200,
            "result": "",
            "start": 0,
            "end": 0
    }
    if audio_file.content_type in AUDIO_MAP.keys():
        if model in MODEL_MAP.keys():
            target_model = model
        else:
            target_model = "default"

        real_name = MODEL_MAP[target_model]
        device = 0 if torch.cuda.is_available() else "cpu"
        pipe = pipeline(
           task="automatic-speech-recognition",
           model=real_name,
           chunk_length_s=30,
           device=device,
        )
        time_start = time.time()
        pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
        try:
           suffix = Path(audio_file.filename).suffix
           with NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
            shutil.copyfileobj(audio_file.file, tmp)
            tmp_path = Path(tmp.name)
        finally:
           audio_file.file.close()
        #file_data = await audio_file.read()
        # rv = data.encode('utf-8')
        #rv = base64.b64encode(file_data).decode()
        #print(rv, "rvrvrvrvr")
        audio_data = np.fromfile(tmp_path)    
        text = pipe(audio_data)["text"]
        time_end = time.time()
        item_response["status"] = 200
        item_response["result"] = text
        item_response["start"] = time_start
        item_response["end"] = time_end
    else:
        item_response["status"] = 400
        item_response["result"] = 'Acceptable files: audio/wav,audio/mpeg,audio/x-flac'
        
    
    return item_response
    
if __name__ == "__main__":
    args = ArgParser().args
    if args.dev:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
    else:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)

    # python -m apis.chat_api      # [Docker] on product mode
    # python -m apis.chat_api -d   # [Dev]    on develop mode