."""
TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
DESCRIPTION = """Granite 3.1 8b Reasoning is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample promptsor enter your own. Keep in mind that AI can occasionally make mistakes.View Documentation
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05
# Vision defaults (advanced settings)
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128
if not torch.cuda.is_available():
print("This demo may not work on CPU.")
# =============================================================================
# Text Model Loading
# =============================================================================
#Standard Model
#granite_text_model="ibm-granite/granite-3.1-8b-instruct"
#With Reasoning
granite_text_model="ruslanmv/granite-3.1-8b-Reasoning"
text_model = AutoModelForCausalLM.from_pretrained(
granite_text_model,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
tokenizer.use_default_system_prompt = False
# =============================================================================
# Vision Model Loading
# =============================================================================
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
vision_model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True # Ensure the custom code is used so that weight shapes match.)
)
# =============================================================================
# Text Generation Function (for text-only chat)
# =============================================================================
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
temperature: float = TEMPERATURE,
repetition_penalty: float = REPETITION_PENALTY,
top_p: float = TOP_P,
top_k: float = TOP_K,
max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
"""Generate function for text chat demo with chain of thought display."""
conversation = []
conversation.append({"role": "system", "content": SYS_PROMPT})
conversation.extend(chat_history)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
)
input_ids = input_ids.to(text_model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
reasoning_started = False
answer_started = False
collected_reasoning = ""
collected_answer = ""
for text in streamer:
outputs.append(text)
current_output = "".join(outputs)
if "" in current_output and not reasoning_started:
reasoning_started = True
reasoning_start_index = current_output.find("") + len("")
collected_reasoning = current_output[reasoning_start_index:]
yield "[Reasoning]: " # Indicate start of reasoning in chatbot
outputs = [collected_reasoning] # Reset outputs to only include reasoning part
elif reasoning_started and "" in current_output and not answer_started:
answer_started = True
reasoning_end_index = current_output.find("")
collected_reasoning = current_output[len(""):reasoning_end_index] # Correctly extract reasoning part
answer_start_index = current_output.find("") + len("")
collected_answer = current_output[answer_start_index:]
yield "\n[Answer]: " # Indicate start of answer in chatbot
outputs = [collected_answer] # Reset outputs to only include answer part
yield collected_answer # Yield initial part of answer
elif reasoning_started and not answer_started:
collected_reasoning = text # Accumulate reasoning tokens
yield text # Stream reasoning tokens
elif answer_started:
collected_answer += text # Accumulate answer tokens
yield text # Stream answer tokens
else:
yield text # In case no tags are found, stream as before
# =============================================================================
# Vision Chat Inference Function (for image+text chat)
# =============================================================================
def get_text_from_content(content):
texts = []
for item in content:
if item["type"] == "text":
texts.append(item["text"])
elif item["type"] == "image":
texts.append("")
return " ".join(texts)
@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
if conversation is None:
conversation = []
user_content = []
if image is not None:
user_content.append({"type": "image", "image": image})
if text and text.strip():
user_content.append({"type": "text", "text": text.strip()})
if not user_content:
return display_vision_conversation(conversation), conversation
conversation.append({"role": "user", "content": user_content})
inputs = vision_processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to("cuda")
torch.manual_seed(random.randint(0, 10000))
generation_kwargs = {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
}
output = vision_model.generate(**inputs, **generation_kwargs)
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
reasoning = ""
answer = ""
if "" in assistant_response and "" in assistant_response:
reasoning_start = assistant_response.find("") + len("")
reasoning_end = assistant_response.find("")
reasoning = assistant_response[reasoning_start:reasoning_end].strip()
answer_start = assistant_response.find("") + len("")
answer_end = assistant_response.find("")
if answer_end != -1: # Handle cases where answer end tag is present
answer = assistant_response[answer_start:answer_end].strip()
else: # Fallback if answer end tag is missing (less robust)
answer = assistant_response[answer_start:].strip()
formatted_response_content = []
if reasoning:
formatted_response_content.append({"type": "text", "text": f"[Reasoning]: {reasoning}"})
formatted_response_content.append({"type": "text", "text": f"[Answer]: {answer}"})
conversation.append({"role": "assistant", "content": formatted_response_content})
return display_vision_conversation(conversation), conversation
# =============================================================================
# Helper Functions to Format Conversation for Display
# =============================================================================
def display_text_conversation(conversation):
"""Convert a text conversation (list of dicts) into a list of (user, assistant) tuples."""
chat_history = []
i = 0
while i < len(conversation):
if conversation[i]["role"] == "user":
user_msg = conversation[i]["content"]
assistant_msg = ""
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
assistant_msg = conversation[i+1]["content"]
i += 2
else:
i += 1
chat_history.append((user_msg, assistant_msg))
else:
i += 1
return chat_history
def display_vision_conversation(conversation):
"""Convert a vision conversation (with mixed content types) into a list of (user, assistant) tuples."""
chat_history = []
i = 0
while i < len(conversation):
if conversation[i]["role"] == "user":
user_msg = get_text_from_content(conversation[i]["content"])
assistant_msg = ""
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
# Extract assistant text; remove any special tokens if present.
assistant_content = conversation[i+1]["content"]
assistant_text_parts = []
for item in assistant_content:
if item["type"] == "text":
assistant_text_parts.append(item["text"])
assistant_msg = "\n".join(assistant_text_parts).strip()
i += 2
else:
i += 1
chat_history.append((user_msg, assistant_msg))
else:
i += 1
return chat_history
# =============================================================================
# Unified Send-Message Function
# =============================================================================
def send_message(image, text,
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
text_state, vision_state):
"""
If an image is uploaded, use the vision model; otherwise, use the text model.
Returns updated conversation (as a list of tuples) and state for each branch.
"""
if image is not None:
# Vision branch
conv = vision_state if vision_state is not None else []
chat_history, updated_conv = chat_inference(
image, text, conv,
temperature=vision_temperature,
top_p=vision_top_p,
top_k=vision_top_k,
max_tokens=vision_max_tokens
)
vision_state = updated_conv
# In vision mode, the conversation display is produced from the vision branch.
return chat_history, text_state, vision_state
else:
# Text branch
conv = text_state if text_state is not None else []
output_text = ""
for chunk in generate(
text, conv,
temperature=text_temperature,
repetition_penalty=text_repetition_penalty,
top_p=text_top_p,
top_k=text_top_k,
max_new_tokens=text_max_new_tokens
):
output_text += chunk # Accumulate for display function to process correctly.
conv.append({"role": "user", "content": text})
conv.append({"role": "assistant", "content": output_text}) # Store full output with tags
text_state = conv
chat_history = display_text_conversation(text_state) # Display function handles tag parsing now.
return chat_history, text_state, vision_state
def clear_chat():
# Clear the conversation and input fields.
return [], [], [], None # (chat_history, text_state, vision_state, cleared text and image inputs)
# =============================================================================
# UI Layout with Gradio
# =============================================================================
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
gr.HTML(f"{TITLE}
", elem_classes=["gr_title"])
gr.HTML(DESCRIPTION)
chatbot = gr.Chatbot(label="Chat History", height=500)
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Upload Image (optional)")
text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
with gr.Column(scale=1):
with gr.Accordion("Text Advanced Settings", open=False):
text_temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"])
repetition_penalty_slider = gr.Slider(minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"])
top_p_slider = gr.Slider(minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"])
top_k_slider = gr.Slider(minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"])
max_new_tokens_slider = gr.Slider(minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"])
with gr.Accordion("Vision Advanced Settings", open=False):
vision_temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"])
vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
send_button = gr.Button("Send Message")
clear_button = gr.Button("Clear Chat")
# Conversation state variables for each branch.
text_state = gr.State([])
vision_state = gr.State([])
send_button.click(
send_message,
inputs=[
image_input, text_input,
text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
text_state, vision_state
],
outputs=[chatbot, text_state, vision_state]
)
clear_button.click(
clear_chat,
inputs=None,
outputs=[chatbot, text_state, vision_state, text_input, image_input]
)
gr.Examples(
examples=[
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
[None, "Explain quantum computing to a beginner."],
[None, "What is OpenShift?"],
[None, "Importance of low latency inference"],
[None, "Boosting productivity habits"],
[None, "Explain and document your code"],
[None, "Generate Java Code"]
],
inputs=[image_input, text_input],
example_labels=[
"Vision Example: What is in this image?",
"Explain quantum computing",
"What is OpenShift?",
"Importance of low latency inference",
"Boosting productivity habits",
"Explain and document your code",
"Generate Java Code"
],
cache_examples=False,
)
if __name__ == "__main__":
demo.queue().launch()