Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	updates
Browse files- .gitignore +1 -0
- Flux-LoRA-Generation-Advanced.zip +3 -0
- flux_app/backend.py +9 -13
- flux_app/enhance_v1.py +0 -56
- flux_app/enhance_v2.py +0 -55
- flux_app/frontend.py +1 -1
- flux_app/frontend_nw.py +0 -236
- flux_app/frontend_v1.py +0 -216
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            /backup
         | 
    	
        Flux-LoRA-Generation-Advanced.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2537b224b8b98c72939afaf580fd85d9c375d1f6e1f94b1c2f630f22fc0f03ce
         | 
| 3 | 
            +
            size 26901
         | 
    	
        flux_app/backend.py
    CHANGED
    
    | @@ -7,8 +7,8 @@ from diffusers import ( | |
| 7 | 
             
                AutoPipelineForImage2Image,
         | 
| 8 | 
             
            )
         | 
| 9 | 
             
            from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED  # Absolute import
         | 
| 10 | 
            -
            from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration | 
| 11 | 
            -
            from flux_app.lora_handling import   | 
| 12 | 
             
            import time
         | 
| 13 | 
             
            from huggingface_hub import login
         | 
| 14 |  | 
| @@ -21,17 +21,14 @@ class ModelManager: | |
| 21 |  | 
| 22 | 
             
                    if hf_token:
         | 
| 23 | 
             
                        login(token=hf_token)  # Log in with the provided token
         | 
| 24 | 
            -
                    #else:  # Optional:  You could add a fallback to interactive login
         | 
| 25 | 
            -
                    #   login()
         | 
| 26 |  | 
| 27 | 
             
                    self.initialize_models()
         | 
| 28 |  | 
| 29 | 
            -
             | 
| 30 | 
             
                def initialize_models(self):
         | 
| 31 | 
             
                    """Initializes the diffusion pipelines and autoencoders."""
         | 
| 32 | 
            -
                    self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE | 
| 33 | 
            -
                    self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE | 
| 34 | 
            -
                    self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1 | 
| 35 | 
             
                    self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
         | 
| 36 | 
             
                        BASE_MODEL,
         | 
| 37 | 
             
                        vae=self.good_vae,
         | 
| @@ -40,18 +37,17 @@ class ModelManager: | |
| 40 | 
             
                        tokenizer=self.pipe.tokenizer,
         | 
| 41 | 
             
                        text_encoder_2=self.pipe.text_encoder_2,
         | 
| 42 | 
             
                        tokenizer_2=self.pipe.tokenizer_2,
         | 
| 43 | 
            -
                        torch_dtype=DTYPE | 
| 44 | 
            -
                        token=True
         | 
| 45 | 
             
                    )
         | 
| 46 | 
            -
                    self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)
         | 
| 47 |  | 
|  | |
|  | |
| 48 |  | 
| 49 | 
             
                def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
         | 
| 50 | 
             
                    """Generates an image using the text-to-image pipeline."""
         | 
| 51 | 
             
                    self.pipe.to(DEVICE)
         | 
| 52 | 
             
                    generator = torch.Generator(device=DEVICE).manual_seed(seed)
         | 
| 53 | 
             
                    with calculateDuration("Generating image"):
         | 
| 54 | 
            -
             | 
| 55 | 
             
                        for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
         | 
| 56 | 
             
                            prompt=prompt_mash,
         | 
| 57 | 
             
                            num_inference_steps=steps,
         | 
| @@ -83,4 +79,4 @@ class ModelManager: | |
| 83 | 
             
                            joint_attention_kwargs={"scale": lora_scale},
         | 
| 84 | 
             
                            output_type="pil",
         | 
| 85 | 
             
                        ).images[0]
         | 
| 86 | 
            -
                        return final_image
         | 
|  | |
| 7 | 
             
                AutoPipelineForImage2Image,
         | 
| 8 | 
             
            )
         | 
| 9 | 
             
            from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED  # Absolute import
         | 
| 10 | 
            +
            from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration  # Absolute import
         | 
| 11 | 
            +
            from flux_app.lora_handling import flux_pipe_call_that_returns_an_iterable_of_images  # Absolute import
         | 
| 12 | 
             
            import time
         | 
| 13 | 
             
            from huggingface_hub import login
         | 
| 14 |  | 
|  | |
| 21 |  | 
| 22 | 
             
                    if hf_token:
         | 
| 23 | 
             
                        login(token=hf_token)  # Log in with the provided token
         | 
|  | |
|  | |
| 24 |  | 
| 25 | 
             
                    self.initialize_models()
         | 
| 26 |  | 
|  | |
| 27 | 
             
                def initialize_models(self):
         | 
| 28 | 
             
                    """Initializes the diffusion pipelines and autoencoders."""
         | 
| 29 | 
            +
                    self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
         | 
| 30 | 
            +
                    self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
         | 
| 31 | 
            +
                    self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1).to(DEVICE)
         | 
| 32 | 
             
                    self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
         | 
| 33 | 
             
                        BASE_MODEL,
         | 
| 34 | 
             
                        vae=self.good_vae,
         | 
|  | |
| 37 | 
             
                        tokenizer=self.pipe.tokenizer,
         | 
| 38 | 
             
                        text_encoder_2=self.pipe.text_encoder_2,
         | 
| 39 | 
             
                        tokenizer_2=self.pipe.tokenizer_2,
         | 
| 40 | 
            +
                        torch_dtype=DTYPE
         | 
|  | |
| 41 | 
             
                    )
         | 
|  | |
| 42 |  | 
| 43 | 
            +
                    setattr(self.pipe, "flux_pipe_call_that_returns_an_iterable_of_images",
         | 
| 44 | 
            +
                            lambda *args, **kwargs: flux_pipe_call_that_returns_an_iterable_of_images(self.pipe, *args, **kwargs))
         | 
| 45 |  | 
| 46 | 
             
                def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
         | 
| 47 | 
             
                    """Generates an image using the text-to-image pipeline."""
         | 
| 48 | 
             
                    self.pipe.to(DEVICE)
         | 
| 49 | 
             
                    generator = torch.Generator(device=DEVICE).manual_seed(seed)
         | 
| 50 | 
             
                    with calculateDuration("Generating image"):
         | 
|  | |
| 51 | 
             
                        for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
         | 
| 52 | 
             
                            prompt=prompt_mash,
         | 
| 53 | 
             
                            num_inference_steps=steps,
         | 
|  | |
| 79 | 
             
                            joint_attention_kwargs={"scale": lora_scale},
         | 
| 80 | 
             
                            output_type="pil",
         | 
| 81 | 
             
                        ).images[0]
         | 
| 82 | 
            +
                        return final_image
         | 
    	
        flux_app/enhance_v1.py
    DELETED
    
    | @@ -1,56 +0,0 @@ | |
| 1 | 
            -
            # flux_app/enhance.py
         | 
| 2 | 
            -
            import time
         | 
| 3 | 
            -
            from huggingface_hub import InferenceClient
         | 
| 4 | 
            -
            import gradio as gr
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            # Initialize the inference client with the new LLM
         | 
| 7 | 
            -
            client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            # Define the system prompt for enhancing user prompts
         | 
| 10 | 
            -
            SYSTEM_PROMPT = (
         | 
| 11 | 
            -
                "You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
         | 
| 12 | 
            -
                "without changing the essence, only write the enhanced prompt and nothing else."
         | 
| 13 | 
            -
            )
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            def format_prompt(message):
         | 
| 16 | 
            -
                """
         | 
| 17 | 
            -
                Format the input message using the system prompt and a timestamp to ensure uniqueness.
         | 
| 18 | 
            -
                """
         | 
| 19 | 
            -
                timestamp = time.time()
         | 
| 20 | 
            -
                formatted = (
         | 
| 21 | 
            -
                    f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
         | 
| 22 | 
            -
                    f"[INST] {message} {timestamp} [/INST]"
         | 
| 23 | 
            -
                )
         | 
| 24 | 
            -
                return formatted
         | 
| 25 | 
            -
             | 
| 26 | 
            -
            def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
         | 
| 27 | 
            -
                """
         | 
| 28 | 
            -
                Generate an enhanced prompt using the new LLM.
         | 
| 29 | 
            -
                This function yields intermediate results as they are generated.
         | 
| 30 | 
            -
                """
         | 
| 31 | 
            -
                temperature = float(temperature)
         | 
| 32 | 
            -
                if temperature < 1e-2:
         | 
| 33 | 
            -
                    temperature = 1e-2
         | 
| 34 | 
            -
                top_p = float(top_p)
         | 
| 35 | 
            -
                generate_kwargs = {
         | 
| 36 | 
            -
                    "temperature": temperature,
         | 
| 37 | 
            -
                    "max_new_tokens": int(max_new_tokens),
         | 
| 38 | 
            -
                    "top_p": top_p,
         | 
| 39 | 
            -
                    "repetition_penalty": float(repetition_penalty),
         | 
| 40 | 
            -
                    "do_sample": True,
         | 
| 41 | 
            -
                }
         | 
| 42 | 
            -
                formatted_prompt = format_prompt(message)
         | 
| 43 | 
            -
                stream = client.text_generation(
         | 
| 44 | 
            -
                    formatted_prompt,
         | 
| 45 | 
            -
                    **generate_kwargs,
         | 
| 46 | 
            -
                    stream=True,
         | 
| 47 | 
            -
                    details=True,
         | 
| 48 | 
            -
                    return_full_text=False,
         | 
| 49 | 
            -
                )
         | 
| 50 | 
            -
                output = ""
         | 
| 51 | 
            -
                for response in stream:
         | 
| 52 | 
            -
                    token_text = response.token.text
         | 
| 53 | 
            -
                    output += token_text
         | 
| 54 | 
            -
                    yield output.strip('</s>')
         | 
| 55 | 
            -
                return output.strip('</s>')
         | 
| 56 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        flux_app/enhance_v2.py
    DELETED
    
    | @@ -1,55 +0,0 @@ | |
| 1 | 
            -
            # flux_app/enhance.py
         | 
| 2 | 
            -
            import time
         | 
| 3 | 
            -
            from huggingface_hub import InferenceClient
         | 
| 4 | 
            -
            import gradio as gr
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            # Initialize the inference client with the new LLM
         | 
| 7 | 
            -
            client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            # Define the system prompt for enhancing user prompts
         | 
| 10 | 
            -
            SYSTEM_PROMPT = (
         | 
| 11 | 
            -
                "You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
         | 
| 12 | 
            -
                "without changing the essence, only write the enhanced prompt and nothing else."
         | 
| 13 | 
            -
            )
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            def format_prompt(message):
         | 
| 16 | 
            -
                """
         | 
| 17 | 
            -
                Format the input message using the system prompt and a timestamp to ensure uniqueness.
         | 
| 18 | 
            -
                """
         | 
| 19 | 
            -
                timestamp = time.time()
         | 
| 20 | 
            -
                formatted = (
         | 
| 21 | 
            -
                    f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
         | 
| 22 | 
            -
                    f"[INST] {message} {timestamp} [/INST]"
         | 
| 23 | 
            -
                )
         | 
| 24 | 
            -
                return formatted
         | 
| 25 | 
            -
             | 
| 26 | 
            -
            def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
         | 
| 27 | 
            -
                """
         | 
| 28 | 
            -
                Generate an enhanced prompt using the new LLM.
         | 
| 29 | 
            -
                This function yields intermediate results as they are generated.
         | 
| 30 | 
            -
                """
         | 
| 31 | 
            -
                temperature = float(temperature)
         | 
| 32 | 
            -
                if temperature < 1e-2:
         | 
| 33 | 
            -
                    temperature = 1e-2
         | 
| 34 | 
            -
                top_p = float(top_p)
         | 
| 35 | 
            -
                generate_kwargs = {
         | 
| 36 | 
            -
                    "temperature": temperature,
         | 
| 37 | 
            -
                    "max_new_tokens": int(max_new_tokens),
         | 
| 38 | 
            -
                    "top_p": top_p,
         | 
| 39 | 
            -
                    "repetition_penalty": float(repetition_penalty),
         | 
| 40 | 
            -
                    "do_sample": True,
         | 
| 41 | 
            -
                }
         | 
| 42 | 
            -
                formatted_prompt = format_prompt(message)
         | 
| 43 | 
            -
                stream = client.text_generation(
         | 
| 44 | 
            -
                    formatted_prompt,
         | 
| 45 | 
            -
                    **generate_kwargs,
         | 
| 46 | 
            -
                    stream=True,
         | 
| 47 | 
            -
                    details=True,
         | 
| 48 | 
            -
                    return_full_text=False,
         | 
| 49 | 
            -
                )
         | 
| 50 | 
            -
                output = ""
         | 
| 51 | 
            -
                for response in stream:
         | 
| 52 | 
            -
                    token_text = response.token.text
         | 
| 53 | 
            -
                    output += token_text
         | 
| 54 | 
            -
                    yield output.strip('</s>')
         | 
| 55 | 
            -
                return output.strip('</s>')
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        flux_app/frontend.py
    CHANGED
    
    | @@ -103,7 +103,7 @@ class Frontend: | |
| 103 | 
             
                        print("Warning: lora.py not found, using placeholder LoRAs.")
         | 
| 104 | 
             
                        pass
         | 
| 105 |  | 
| 106 | 
            -
                @spaces.GPU(duration= | 
| 107 | 
             
                def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
         | 
| 108 | 
             
                             randomize_seed, seed, width, height, lora_scale, use_enhancer,
         | 
| 109 | 
             
                             progress=gr.Progress(track_tqdm=True)):
         | 
|  | |
| 103 | 
             
                        print("Warning: lora.py not found, using placeholder LoRAs.")
         | 
| 104 | 
             
                        pass
         | 
| 105 |  | 
| 106 | 
            +
                @spaces.GPU(duration=300)
         | 
| 107 | 
             
                def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
         | 
| 108 | 
             
                             randomize_seed, seed, width, height, lora_scale, use_enhancer,
         | 
| 109 | 
             
                             progress=gr.Progress(track_tqdm=True)):
         | 
    	
        flux_app/frontend_nw.py
    DELETED
    
    | @@ -1,236 +0,0 @@ | |
| 1 | 
            -
            # frontend.py
         | 
| 2 | 
            -
            import gradio as gr
         | 
| 3 | 
            -
            import sys
         | 
| 4 | 
            -
            import os
         | 
| 5 | 
            -
            import spaces
         | 
| 6 | 
            -
            # Add the parent directory to sys.path
         | 
| 7 | 
            -
            parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
         | 
| 8 | 
            -
            sys.path.insert(0, parent_dir)
         | 
| 9 | 
            -
            #print(sys.path) #DEBUG
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            from flux_app.backend import ModelManager  # Absolute import
         | 
| 12 | 
            -
            from flux_app.config import MAX_SEED      # Absolute import
         | 
| 13 | 
            -
            from flux_app.lora_handling import (
         | 
| 14 | 
            -
                add_custom_lora, remove_custom_lora, prepare_prompt,
         | 
| 15 | 
            -
                unload_lora_weights, load_lora_weights_into_pipeline, update_selection
         | 
| 16 | 
            -
            )
         | 
| 17 | 
            -
            from flux_app.utilities import randomize_seed_if_needed, calculateDuration  # Absolute import
         | 
| 18 | 
            -
            # Import the prompt enhancer generate function from the new module
         | 
| 19 | 
            -
            from flux_app.enhance import generate
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            # Dummy loras data for initial UI setup.
         | 
| 22 | 
            -
            initial_loras = [
         | 
| 23 | 
            -
                {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
         | 
| 24 | 
            -
            ]
         | 
| 25 | 
            -
             | 
| 26 | 
            -
            class Frontend:
         | 
| 27 | 
            -
                def __init__(self, model_manager: ModelManager):
         | 
| 28 | 
            -
                    self.model_manager = model_manager
         | 
| 29 | 
            -
                    self.loras = initial_loras
         | 
| 30 | 
            -
                    self.load_initial_loras()
         | 
| 31 | 
            -
                    self.css = self.define_css()
         | 
| 32 | 
            -
             | 
| 33 | 
            -
                def define_css(self):
         | 
| 34 | 
            -
                    # A cleaner, professional CSS styling.
         | 
| 35 | 
            -
                    return '''
         | 
| 36 | 
            -
                    /* Title Styling */
         | 
| 37 | 
            -
                    #title {
         | 
| 38 | 
            -
                        text-align: center;
         | 
| 39 | 
            -
                        margin-bottom: 20px;
         | 
| 40 | 
            -
                    }
         | 
| 41 | 
            -
                    #title h1 {
         | 
| 42 | 
            -
                        font-size: 2.5rem;
         | 
| 43 | 
            -
                        margin: 0;
         | 
| 44 | 
            -
                        color: #333;
         | 
| 45 | 
            -
                    }
         | 
| 46 | 
            -
                    /* Button and Column Styling */
         | 
| 47 | 
            -
                    #gen_btn {
         | 
| 48 | 
            -
                        width: 100%;
         | 
| 49 | 
            -
                        padding: 12px;
         | 
| 50 | 
            -
                        font-weight: bold;
         | 
| 51 | 
            -
                        border-radius: 5px;
         | 
| 52 | 
            -
                    }
         | 
| 53 | 
            -
                    #gen_column {
         | 
| 54 | 
            -
                        display: flex;
         | 
| 55 | 
            -
                        align-items: center;
         | 
| 56 | 
            -
                        justify-content: center;
         | 
| 57 | 
            -
                    }
         | 
| 58 | 
            -
                    /* Gallery and List Styling */
         | 
| 59 | 
            -
                    #gallery .grid-wrap {
         | 
| 60 | 
            -
                        margin-top: 15px;
         | 
| 61 | 
            -
                    }
         | 
| 62 | 
            -
                    #lora_list {
         | 
| 63 | 
            -
                        background-color: #f5f5f5;
         | 
| 64 | 
            -
                        padding: 10px;
         | 
| 65 | 
            -
                        border-radius: 4px;
         | 
| 66 | 
            -
                        font-size: 0.9rem;
         | 
| 67 | 
            -
                    }
         | 
| 68 | 
            -
                    .card_internal {
         | 
| 69 | 
            -
                        display: flex;
         | 
| 70 | 
            -
                        align-items: center;
         | 
| 71 | 
            -
                        height: 100px;
         | 
| 72 | 
            -
                        margin-top: 10px;
         | 
| 73 | 
            -
                    }
         | 
| 74 | 
            -
                    .card_internal img {
         | 
| 75 | 
            -
                        margin-right: 10px;
         | 
| 76 | 
            -
                    }
         | 
| 77 | 
            -
                    .styler {
         | 
| 78 | 
            -
                        --form-gap-width: 0px !important;
         | 
| 79 | 
            -
                    }
         | 
| 80 | 
            -
                    /* Progress Bar Styling */
         | 
| 81 | 
            -
                    .progress-container {
         | 
| 82 | 
            -
                        width: 100%;
         | 
| 83 | 
            -
                        height: 20px;
         | 
| 84 | 
            -
                        background-color: #e0e0e0;
         | 
| 85 | 
            -
                        border-radius: 10px;
         | 
| 86 | 
            -
                        overflow: hidden;
         | 
| 87 | 
            -
                        margin-bottom: 20px;
         | 
| 88 | 
            -
                    }
         | 
| 89 | 
            -
                    .progress-bar {
         | 
| 90 | 
            -
                        height: 100%;
         | 
| 91 | 
            -
                        background-color: #4f46e5;
         | 
| 92 | 
            -
                        transition: width 0.3s ease-in-out;
         | 
| 93 | 
            -
                        width: calc(var(--current) / var(--total) * 100%);
         | 
| 94 | 
            -
                    }
         | 
| 95 | 
            -
                    '''
         | 
| 96 | 
            -
             | 
| 97 | 
            -
                def load_initial_loras(self):
         | 
| 98 | 
            -
                    try:
         | 
| 99 | 
            -
                        from flux_app.lora import loras as loras_list  # Absolute import
         | 
| 100 | 
            -
                        self.loras = loras_list
         | 
| 101 | 
            -
                    except ImportError:
         | 
| 102 | 
            -
                        print("Warning: lora.py not found, using placeholder LoRAs.")
         | 
| 103 | 
            -
                        pass
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                @spaces.GPU(duration=100)
         | 
| 106 | 
            -
                def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)):
         | 
| 107 | 
            -
                    # If prompt enhancer is enabled, generate the enhanced prompt.
         | 
| 108 | 
            -
                    if use_enhancer:
         | 
| 109 | 
            -
                        enhanced_prompt = ""
         | 
| 110 | 
            -
                        # Generate the enhanced prompt (consume the generator to get the final result)
         | 
| 111 | 
            -
                        for chunk in generate(prompt):
         | 
| 112 | 
            -
                            enhanced_prompt = chunk
         | 
| 113 | 
            -
                        prompt_used = enhanced_prompt
         | 
| 114 | 
            -
                    else:
         | 
| 115 | 
            -
                        enhanced_prompt = ""
         | 
| 116 | 
            -
                        prompt_used = prompt
         | 
| 117 | 
            -
             | 
| 118 | 
            -
                    seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
         | 
| 119 | 
            -
                    prompt_mash = prepare_prompt(prompt_used, selected_index, self.loras)
         | 
| 120 | 
            -
                    selected_lora = self.loras[selected_index]
         | 
| 121 | 
            -
             | 
| 122 | 
            -
                    unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
         | 
| 123 | 
            -
                    pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
         | 
| 124 | 
            -
                    load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
         | 
| 125 | 
            -
             | 
| 126 | 
            -
                    if image_input is not None:
         | 
| 127 | 
            -
                        final_image = self.model_manager.generate_image_to_image(
         | 
| 128 | 
            -
                            prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
         | 
| 129 | 
            -
                        )
         | 
| 130 | 
            -
                        yield final_image, seed, gr.update(visible=False), enhanced_prompt
         | 
| 131 | 
            -
                    else:
         | 
| 132 | 
            -
                        image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
         | 
| 133 | 
            -
                        final_image = None
         | 
| 134 | 
            -
                        step_counter = 0
         | 
| 135 | 
            -
                        for image in image_generator:
         | 
| 136 | 
            -
                            step_counter += 1
         | 
| 137 | 
            -
                            final_image = image
         | 
| 138 | 
            -
                            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
         | 
| 139 | 
            -
                            yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_prompt
         | 
| 140 | 
            -
             | 
| 141 | 
            -
                        yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_prompt
         | 
| 142 | 
            -
             | 
| 143 | 
            -
                def create_ui(self):
         | 
| 144 | 
            -
                    with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
         | 
| 145 | 
            -
                        title = gr.HTML(
         | 
| 146 | 
            -
                            """<h1>Flux LoRA Generation</h1>""",
         | 
| 147 | 
            -
                            elem_id="title",
         | 
| 148 | 
            -
                        )
         | 
| 149 | 
            -
                        selected_index = gr.State(None)
         | 
| 150 | 
            -
             | 
| 151 | 
            -
                        with gr.Row():
         | 
| 152 | 
            -
                            with gr.Column(scale=3):
         | 
| 153 | 
            -
                                prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
         | 
| 154 | 
            -
                            with gr.Column(scale=1, elem_id="gen_column"):
         | 
| 155 | 
            -
                                generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
         | 
| 156 | 
            -
                        with gr.Row():
         | 
| 157 | 
            -
                            with gr.Column():
         | 
| 158 | 
            -
                                selected_info = gr.Markdown("")
         | 
| 159 | 
            -
                                gallery = gr.Gallery(
         | 
| 160 | 
            -
                                    [(item["image"], item["title"]) for item in self.loras],
         | 
| 161 | 
            -
                                    label="LoRA Collection",
         | 
| 162 | 
            -
                                    allow_preview=False,
         | 
| 163 | 
            -
                                    columns=3,
         | 
| 164 | 
            -
                                    elem_id="gallery",
         | 
| 165 | 
            -
                                    show_share_button=False
         | 
| 166 | 
            -
                                )
         | 
| 167 | 
            -
                                with gr.Group():
         | 
| 168 | 
            -
                                    custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
         | 
| 169 | 
            -
                                    gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
         | 
| 170 | 
            -
                                custom_lora_info = gr.HTML(visible=False)
         | 
| 171 | 
            -
                                custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
         | 
| 172 | 
            -
                            with gr.Column():
         | 
| 173 | 
            -
                                progress_bar = gr.Markdown(elem_id="progress", visible=False)
         | 
| 174 | 
            -
                                result = gr.Image(label="Generated Image")
         | 
| 175 | 
            -
             | 
| 176 | 
            -
                        with gr.Row():
         | 
| 177 | 
            -
                            with gr.Accordion("Advanced Settings", open=False):
         | 
| 178 | 
            -
                                with gr.Row():
         | 
| 179 | 
            -
                                    input_image = gr.Image(label="Input image", type="filepath")
         | 
| 180 | 
            -
                                    image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
         | 
| 181 | 
            -
                                with gr.Column():
         | 
| 182 | 
            -
                                    with gr.Row():
         | 
| 183 | 
            -
                                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
         | 
| 184 | 
            -
                                        steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
         | 
| 185 | 
            -
                                    with gr.Row():
         | 
| 186 | 
            -
                                        width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
         | 
| 187 | 
            -
                                        height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
         | 
| 188 | 
            -
                                    with gr.Row():
         | 
| 189 | 
            -
                                        randomize_seed = gr.Checkbox(True, label="Randomize seed")
         | 
| 190 | 
            -
                                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
         | 
| 191 | 
            -
                                        lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
         | 
| 192 | 
            -
                                # Prompt Enhancer Section
         | 
| 193 | 
            -
                                with gr.Group():
         | 
| 194 | 
            -
                                    use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=True)
         | 
| 195 | 
            -
                                    show_enhanced_prompt = gr.Checkbox(label="Display Enhanced Prompt", value=False)
         | 
| 196 | 
            -
                                    enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", lines=3, visible=False)
         | 
| 197 | 
            -
             | 
| 198 | 
            -
                        gallery.select(
         | 
| 199 | 
            -
                            update_selection,
         | 
| 200 | 
            -
                            inputs=[width, height, gr.State(self.loras)],
         | 
| 201 | 
            -
                            outputs=[prompt, selected_info, selected_index, width, height]
         | 
| 202 | 
            -
                        )
         | 
| 203 | 
            -
                        custom_lora.input(
         | 
| 204 | 
            -
                            add_custom_lora,
         | 
| 205 | 
            -
                            inputs=[custom_lora, gr.State(self.loras)],
         | 
| 206 | 
            -
                            outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
         | 
| 207 | 
            -
                        )
         | 
| 208 | 
            -
                        custom_lora_button.click(
         | 
| 209 | 
            -
                            remove_custom_lora,
         | 
| 210 | 
            -
                            outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
         | 
| 211 | 
            -
                        )
         | 
| 212 | 
            -
             | 
| 213 | 
            -
                        # Toggle the visibility of the enhanced prompt textbox based on the checkbox state.
         | 
| 214 | 
            -
                        show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
         | 
| 215 | 
            -
                                                    inputs=show_enhanced_prompt,
         | 
| 216 | 
            -
                                                    outputs=enhanced_prompt_box)
         | 
| 217 | 
            -
             | 
| 218 | 
            -
                        gr.on(
         | 
| 219 | 
            -
                            triggers=[generate_button.click, prompt.submit],
         | 
| 220 | 
            -
                            fn=self.run_lora,
         | 
| 221 | 
            -
                            inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
         | 
| 222 | 
            -
                            outputs=[result, seed, progress_bar, enhanced_prompt_box]
         | 
| 223 | 
            -
                        )
         | 
| 224 | 
            -
             | 
| 225 | 
            -
                        # Credits section added at the bottom
         | 
| 226 | 
            -
                        with gr.Row():
         | 
| 227 | 
            -
                            gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
         | 
| 228 | 
            -
                        
         | 
| 229 | 
            -
                        return app
         | 
| 230 | 
            -
             | 
| 231 | 
            -
            if __name__ == "__main__":
         | 
| 232 | 
            -
                model_manager = ModelManager()
         | 
| 233 | 
            -
                frontend = Frontend(model_manager)
         | 
| 234 | 
            -
                app = frontend.create_ui()
         | 
| 235 | 
            -
                app.queue()
         | 
| 236 | 
            -
                app.launch(debug=True)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        flux_app/frontend_v1.py
    DELETED
    
    | @@ -1,216 +0,0 @@ | |
| 1 | 
            -
            # frontend.py
         | 
| 2 | 
            -
            import gradio as gr
         | 
| 3 | 
            -
            import sys
         | 
| 4 | 
            -
            import os
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            # Add the parent directory to sys.path
         | 
| 7 | 
            -
            parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
         | 
| 8 | 
            -
            sys.path.insert(0, parent_dir)
         | 
| 9 | 
            -
            #print(sys.path) #DEBUG
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            from flux_app.backend import ModelManager  # Absolute import
         | 
| 12 | 
            -
            from flux_app.config import MAX_SEED      # Absolute import
         | 
| 13 | 
            -
            from flux_app.lora_handling import (
         | 
| 14 | 
            -
                add_custom_lora, remove_custom_lora, prepare_prompt,
         | 
| 15 | 
            -
                unload_lora_weights, load_lora_weights_into_pipeline, update_selection
         | 
| 16 | 
            -
            )
         | 
| 17 | 
            -
            from flux_app.utilities import randomize_seed_if_needed, calculateDuration  # Absolute import
         | 
| 18 | 
            -
            import spaces
         | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
            # Dummy loras data for initial UI setup.
         | 
| 22 | 
            -
            initial_loras = [
         | 
| 23 | 
            -
                {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
         | 
| 24 | 
            -
            ]
         | 
| 25 | 
            -
             | 
| 26 | 
            -
            class Frontend:
         | 
| 27 | 
            -
                def __init__(self, model_manager: ModelManager):
         | 
| 28 | 
            -
                    self.model_manager = model_manager
         | 
| 29 | 
            -
                    self.loras = initial_loras
         | 
| 30 | 
            -
                    self.load_initial_loras()
         | 
| 31 | 
            -
                    self.css = self.define_css()
         | 
| 32 | 
            -
             | 
| 33 | 
            -
                def define_css(self):
         | 
| 34 | 
            -
                    # A cleaner, professional CSS styling.
         | 
| 35 | 
            -
                    return '''
         | 
| 36 | 
            -
                    /* Title Styling */
         | 
| 37 | 
            -
                    #title {
         | 
| 38 | 
            -
                        text-align: center;
         | 
| 39 | 
            -
                        margin-bottom: 20px;
         | 
| 40 | 
            -
                    }
         | 
| 41 | 
            -
                    #title h1 {
         | 
| 42 | 
            -
                        font-size: 2.5rem;
         | 
| 43 | 
            -
                        margin: 0;
         | 
| 44 | 
            -
                        color: #333;
         | 
| 45 | 
            -
                    }
         | 
| 46 | 
            -
                    /* Button and Column Styling */
         | 
| 47 | 
            -
                    #gen_btn {
         | 
| 48 | 
            -
                        width: 100%;
         | 
| 49 | 
            -
                        padding: 12px;
         | 
| 50 | 
            -
                        font-weight: bold;
         | 
| 51 | 
            -
                        border-radius: 5px;
         | 
| 52 | 
            -
                    }
         | 
| 53 | 
            -
                    #gen_column {
         | 
| 54 | 
            -
                        display: flex;
         | 
| 55 | 
            -
                        align-items: center;
         | 
| 56 | 
            -
                        justify-content: center;
         | 
| 57 | 
            -
                    }
         | 
| 58 | 
            -
                    /* Gallery and List Styling */
         | 
| 59 | 
            -
                    #gallery .grid-wrap {
         | 
| 60 | 
            -
                        margin-top: 15px;
         | 
| 61 | 
            -
                    }
         | 
| 62 | 
            -
                    #lora_list {
         | 
| 63 | 
            -
                        background-color: #f5f5f5;
         | 
| 64 | 
            -
                        padding: 10px;
         | 
| 65 | 
            -
                        border-radius: 4px;
         | 
| 66 | 
            -
                        font-size: 0.9rem;
         | 
| 67 | 
            -
                    }
         | 
| 68 | 
            -
                    .card_internal {
         | 
| 69 | 
            -
                        display: flex;
         | 
| 70 | 
            -
                        align-items: center;
         | 
| 71 | 
            -
                        height: 100px;
         | 
| 72 | 
            -
                        margin-top: 10px;
         | 
| 73 | 
            -
                    }
         | 
| 74 | 
            -
                    .card_internal img {
         | 
| 75 | 
            -
                        margin-right: 10px;
         | 
| 76 | 
            -
                    }
         | 
| 77 | 
            -
                    .styler {
         | 
| 78 | 
            -
                        --form-gap-width: 0px !important;
         | 
| 79 | 
            -
                    }
         | 
| 80 | 
            -
                    /* Progress Bar Styling */
         | 
| 81 | 
            -
                    .progress-container {
         | 
| 82 | 
            -
                        width: 100%;
         | 
| 83 | 
            -
                        height: 20px;
         | 
| 84 | 
            -
                        background-color: #e0e0e0;
         | 
| 85 | 
            -
                        border-radius: 10px;
         | 
| 86 | 
            -
                        overflow: hidden;
         | 
| 87 | 
            -
                        margin-bottom: 20px;
         | 
| 88 | 
            -
                    }
         | 
| 89 | 
            -
                    .progress-bar {
         | 
| 90 | 
            -
                        height: 100%;
         | 
| 91 | 
            -
                        background-color: #4f46e5;
         | 
| 92 | 
            -
                        transition: width 0.3s ease-in-out;
         | 
| 93 | 
            -
                        width: calc(var(--current) / var(--total) * 100%);
         | 
| 94 | 
            -
                    }
         | 
| 95 | 
            -
                    '''
         | 
| 96 | 
            -
             | 
| 97 | 
            -
                def load_initial_loras(self):
         | 
| 98 | 
            -
                    try:
         | 
| 99 | 
            -
                        from flux_app.lora import loras as loras_list  # Absolute import
         | 
| 100 | 
            -
                        self.loras = loras_list
         | 
| 101 | 
            -
                    except ImportError:
         | 
| 102 | 
            -
                        print("Warning: lora.py not found, using placeholder LoRAs.")
         | 
| 103 | 
            -
                        pass
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                @spaces.GPU(duration=100)
         | 
| 106 | 
            -
                def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
         | 
| 107 | 
            -
                    seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
         | 
| 108 | 
            -
                    prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
         | 
| 109 | 
            -
                    selected_lora = self.loras[selected_index]
         | 
| 110 | 
            -
             | 
| 111 | 
            -
                    unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
         | 
| 112 | 
            -
                    pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
         | 
| 113 | 
            -
                    load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
         | 
| 114 | 
            -
             | 
| 115 | 
            -
                    if image_input is not None:
         | 
| 116 | 
            -
                        final_image = self.model_manager.generate_image_to_image(
         | 
| 117 | 
            -
                            prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
         | 
| 118 | 
            -
                        )
         | 
| 119 | 
            -
                        yield final_image, seed, gr.update(visible=False)
         | 
| 120 | 
            -
                    else:
         | 
| 121 | 
            -
                         image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
         | 
| 122 | 
            -
                         final_image = None
         | 
| 123 | 
            -
                         step_counter = 0
         | 
| 124 | 
            -
                         for image in image_generator:
         | 
| 125 | 
            -
                            step_counter += 1
         | 
| 126 | 
            -
                            final_image = image
         | 
| 127 | 
            -
                            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
         | 
| 128 | 
            -
                            yield image, seed, gr.update(value=progress_bar, visible=True)
         | 
| 129 | 
            -
             | 
| 130 | 
            -
                         yield final_image, seed, gr.update(value=progress_bar, visible=False)
         | 
| 131 | 
            -
             | 
| 132 | 
            -
                def create_ui(self):
         | 
| 133 | 
            -
                    # Using a base theme for a clean and professional look.
         | 
| 134 | 
            -
                    with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
         | 
| 135 | 
            -
                        title = gr.HTML(
         | 
| 136 | 
            -
                            """<h1>Flux LoRA Generation</h1>""",
         | 
| 137 | 
            -
                            elem_id="title",
         | 
| 138 | 
            -
                        )
         | 
| 139 | 
            -
                        selected_index = gr.State(None)
         | 
| 140 | 
            -
             | 
| 141 | 
            -
                        with gr.Row():
         | 
| 142 | 
            -
                            with gr.Column(scale=3):
         | 
| 143 | 
            -
                                prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
         | 
| 144 | 
            -
                            with gr.Column(scale=1, elem_id="gen_column"):
         | 
| 145 | 
            -
                                generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
         | 
| 146 | 
            -
                        with gr.Row():
         | 
| 147 | 
            -
                            with gr.Column():
         | 
| 148 | 
            -
                                selected_info = gr.Markdown("")
         | 
| 149 | 
            -
                                gallery = gr.Gallery(
         | 
| 150 | 
            -
                                    [(item["image"], item["title"]) for item in self.loras],
         | 
| 151 | 
            -
                                    label="LoRA Collection",
         | 
| 152 | 
            -
                                    allow_preview=False,
         | 
| 153 | 
            -
                                    columns=3,
         | 
| 154 | 
            -
                                    elem_id="gallery",
         | 
| 155 | 
            -
                                    show_share_button=False
         | 
| 156 | 
            -
                                )
         | 
| 157 | 
            -
                                with gr.Group():
         | 
| 158 | 
            -
                                    custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
         | 
| 159 | 
            -
                                    gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
         | 
| 160 | 
            -
                                custom_lora_info = gr.HTML(visible=False)
         | 
| 161 | 
            -
                                custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
         | 
| 162 | 
            -
                            with gr.Column():
         | 
| 163 | 
            -
                                progress_bar = gr.Markdown(elem_id="progress", visible=False)
         | 
| 164 | 
            -
                                result = gr.Image(label="Generated Image")
         | 
| 165 | 
            -
             | 
| 166 | 
            -
                        with gr.Row():
         | 
| 167 | 
            -
                            with gr.Accordion("Advanced Settings", open=False):
         | 
| 168 | 
            -
                                with gr.Row():
         | 
| 169 | 
            -
                                    input_image = gr.Image(label="Input image", type="filepath")
         | 
| 170 | 
            -
                                    image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
         | 
| 171 | 
            -
                                with gr.Column():
         | 
| 172 | 
            -
                                    with gr.Row():
         | 
| 173 | 
            -
                                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
         | 
| 174 | 
            -
                                        steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
         | 
| 175 | 
            -
                                    with gr.Row():
         | 
| 176 | 
            -
                                        width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
         | 
| 177 | 
            -
                                        height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
         | 
| 178 | 
            -
                                    with gr.Row():
         | 
| 179 | 
            -
                                        randomize_seed = gr.Checkbox(True, label="Randomize seed")
         | 
| 180 | 
            -
                                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
         | 
| 181 | 
            -
                                        lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
         | 
| 182 | 
            -
             | 
| 183 | 
            -
                        gallery.select(
         | 
| 184 | 
            -
                            update_selection,
         | 
| 185 | 
            -
                            inputs=[width, height, gr.State(self.loras)],
         | 
| 186 | 
            -
                            outputs=[prompt, selected_info, selected_index, width, height]
         | 
| 187 | 
            -
                        )
         | 
| 188 | 
            -
                        custom_lora.input(
         | 
| 189 | 
            -
                            add_custom_lora,
         | 
| 190 | 
            -
                            inputs=[custom_lora, gr.State(self.loras)],
         | 
| 191 | 
            -
                            outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
         | 
| 192 | 
            -
                        )
         | 
| 193 | 
            -
                        custom_lora_button.click(
         | 
| 194 | 
            -
                            remove_custom_lora,
         | 
| 195 | 
            -
                            outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
         | 
| 196 | 
            -
                        )
         | 
| 197 | 
            -
             | 
| 198 | 
            -
                        gr.on(
         | 
| 199 | 
            -
                            triggers=[generate_button.click, prompt.submit],
         | 
| 200 | 
            -
                            fn=self.run_lora,
         | 
| 201 | 
            -
                            inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
         | 
| 202 | 
            -
                            outputs=[result, seed, progress_bar]
         | 
| 203 | 
            -
                        )
         | 
| 204 | 
            -
             | 
| 205 | 
            -
                        # Credits section added at the bottom
         | 
| 206 | 
            -
                        with gr.Row():
         | 
| 207 | 
            -
                            gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
         | 
| 208 | 
            -
                        
         | 
| 209 | 
            -
                        return app
         | 
| 210 | 
            -
             | 
| 211 | 
            -
            if __name__ == "__main__":
         | 
| 212 | 
            -
                model_manager = ModelManager()
         | 
| 213 | 
            -
                frontend = Frontend(model_manager)
         | 
| 214 | 
            -
                app = frontend.create_ui()
         | 
| 215 | 
            -
                app.queue()
         | 
| 216 | 
            -
                app.launch()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
