Spaces:
Running
on
Zero
Running
on
Zero
updates
Browse files- .gitignore +1 -0
- Flux-LoRA-Generation-Advanced.zip +3 -0
- flux_app/backend.py +9 -13
- flux_app/enhance_v1.py +0 -56
- flux_app/enhance_v2.py +0 -55
- flux_app/frontend.py +1 -1
- flux_app/frontend_nw.py +0 -236
- flux_app/frontend_v1.py +0 -216
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/backup
|
Flux-LoRA-Generation-Advanced.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2537b224b8b98c72939afaf580fd85d9c375d1f6e1f94b1c2f630f22fc0f03ce
|
| 3 |
+
size 26901
|
flux_app/backend.py
CHANGED
|
@@ -7,8 +7,8 @@ from diffusers import (
|
|
| 7 |
AutoPipelineForImage2Image,
|
| 8 |
)
|
| 9 |
from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED # Absolute import
|
| 10 |
-
from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration
|
| 11 |
-
from flux_app.lora_handling import
|
| 12 |
import time
|
| 13 |
from huggingface_hub import login
|
| 14 |
|
|
@@ -21,17 +21,14 @@ class ModelManager:
|
|
| 21 |
|
| 22 |
if hf_token:
|
| 23 |
login(token=hf_token) # Log in with the provided token
|
| 24 |
-
#else: # Optional: You could add a fallback to interactive login
|
| 25 |
-
# login()
|
| 26 |
|
| 27 |
self.initialize_models()
|
| 28 |
|
| 29 |
-
|
| 30 |
def initialize_models(self):
|
| 31 |
"""Initializes the diffusion pipelines and autoencoders."""
|
| 32 |
-
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE
|
| 33 |
-
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE
|
| 34 |
-
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1
|
| 35 |
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 36 |
BASE_MODEL,
|
| 37 |
vae=self.good_vae,
|
|
@@ -40,18 +37,17 @@ class ModelManager:
|
|
| 40 |
tokenizer=self.pipe.tokenizer,
|
| 41 |
text_encoder_2=self.pipe.text_encoder_2,
|
| 42 |
tokenizer_2=self.pipe.tokenizer_2,
|
| 43 |
-
torch_dtype=DTYPE
|
| 44 |
-
token=True
|
| 45 |
)
|
| 46 |
-
self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)
|
| 47 |
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
|
| 50 |
"""Generates an image using the text-to-image pipeline."""
|
| 51 |
self.pipe.to(DEVICE)
|
| 52 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 53 |
with calculateDuration("Generating image"):
|
| 54 |
-
|
| 55 |
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 56 |
prompt=prompt_mash,
|
| 57 |
num_inference_steps=steps,
|
|
@@ -83,4 +79,4 @@ class ModelManager:
|
|
| 83 |
joint_attention_kwargs={"scale": lora_scale},
|
| 84 |
output_type="pil",
|
| 85 |
).images[0]
|
| 86 |
-
return final_image
|
|
|
|
| 7 |
AutoPipelineForImage2Image,
|
| 8 |
)
|
| 9 |
from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED # Absolute import
|
| 10 |
+
from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration # Absolute import
|
| 11 |
+
from flux_app.lora_handling import flux_pipe_call_that_returns_an_iterable_of_images # Absolute import
|
| 12 |
import time
|
| 13 |
from huggingface_hub import login
|
| 14 |
|
|
|
|
| 21 |
|
| 22 |
if hf_token:
|
| 23 |
login(token=hf_token) # Log in with the provided token
|
|
|
|
|
|
|
| 24 |
|
| 25 |
self.initialize_models()
|
| 26 |
|
|
|
|
| 27 |
def initialize_models(self):
|
| 28 |
"""Initializes the diffusion pipelines and autoencoders."""
|
| 29 |
+
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
|
| 30 |
+
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
|
| 31 |
+
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1).to(DEVICE)
|
| 32 |
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 33 |
BASE_MODEL,
|
| 34 |
vae=self.good_vae,
|
|
|
|
| 37 |
tokenizer=self.pipe.tokenizer,
|
| 38 |
text_encoder_2=self.pipe.text_encoder_2,
|
| 39 |
tokenizer_2=self.pipe.tokenizer_2,
|
| 40 |
+
torch_dtype=DTYPE
|
|
|
|
| 41 |
)
|
|
|
|
| 42 |
|
| 43 |
+
setattr(self.pipe, "flux_pipe_call_that_returns_an_iterable_of_images",
|
| 44 |
+
lambda *args, **kwargs: flux_pipe_call_that_returns_an_iterable_of_images(self.pipe, *args, **kwargs))
|
| 45 |
|
| 46 |
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
|
| 47 |
"""Generates an image using the text-to-image pipeline."""
|
| 48 |
self.pipe.to(DEVICE)
|
| 49 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 50 |
with calculateDuration("Generating image"):
|
|
|
|
| 51 |
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 52 |
prompt=prompt_mash,
|
| 53 |
num_inference_steps=steps,
|
|
|
|
| 79 |
joint_attention_kwargs={"scale": lora_scale},
|
| 80 |
output_type="pil",
|
| 81 |
).images[0]
|
| 82 |
+
return final_image
|
flux_app/enhance_v1.py
DELETED
|
@@ -1,56 +0,0 @@
|
|
| 1 |
-
# flux_app/enhance.py
|
| 2 |
-
import time
|
| 3 |
-
from huggingface_hub import InferenceClient
|
| 4 |
-
import gradio as gr
|
| 5 |
-
|
| 6 |
-
# Initialize the inference client with the new LLM
|
| 7 |
-
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 8 |
-
|
| 9 |
-
# Define the system prompt for enhancing user prompts
|
| 10 |
-
SYSTEM_PROMPT = (
|
| 11 |
-
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
| 12 |
-
"without changing the essence, only write the enhanced prompt and nothing else."
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
def format_prompt(message):
|
| 16 |
-
"""
|
| 17 |
-
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
| 18 |
-
"""
|
| 19 |
-
timestamp = time.time()
|
| 20 |
-
formatted = (
|
| 21 |
-
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
| 22 |
-
f"[INST] {message} {timestamp} [/INST]"
|
| 23 |
-
)
|
| 24 |
-
return formatted
|
| 25 |
-
|
| 26 |
-
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
| 27 |
-
"""
|
| 28 |
-
Generate an enhanced prompt using the new LLM.
|
| 29 |
-
This function yields intermediate results as they are generated.
|
| 30 |
-
"""
|
| 31 |
-
temperature = float(temperature)
|
| 32 |
-
if temperature < 1e-2:
|
| 33 |
-
temperature = 1e-2
|
| 34 |
-
top_p = float(top_p)
|
| 35 |
-
generate_kwargs = {
|
| 36 |
-
"temperature": temperature,
|
| 37 |
-
"max_new_tokens": int(max_new_tokens),
|
| 38 |
-
"top_p": top_p,
|
| 39 |
-
"repetition_penalty": float(repetition_penalty),
|
| 40 |
-
"do_sample": True,
|
| 41 |
-
}
|
| 42 |
-
formatted_prompt = format_prompt(message)
|
| 43 |
-
stream = client.text_generation(
|
| 44 |
-
formatted_prompt,
|
| 45 |
-
**generate_kwargs,
|
| 46 |
-
stream=True,
|
| 47 |
-
details=True,
|
| 48 |
-
return_full_text=False,
|
| 49 |
-
)
|
| 50 |
-
output = ""
|
| 51 |
-
for response in stream:
|
| 52 |
-
token_text = response.token.text
|
| 53 |
-
output += token_text
|
| 54 |
-
yield output.strip('</s>')
|
| 55 |
-
return output.strip('</s>')
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_app/enhance_v2.py
DELETED
|
@@ -1,55 +0,0 @@
|
|
| 1 |
-
# flux_app/enhance.py
|
| 2 |
-
import time
|
| 3 |
-
from huggingface_hub import InferenceClient
|
| 4 |
-
import gradio as gr
|
| 5 |
-
|
| 6 |
-
# Initialize the inference client with the new LLM
|
| 7 |
-
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 8 |
-
|
| 9 |
-
# Define the system prompt for enhancing user prompts
|
| 10 |
-
SYSTEM_PROMPT = (
|
| 11 |
-
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
| 12 |
-
"without changing the essence, only write the enhanced prompt and nothing else."
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
def format_prompt(message):
|
| 16 |
-
"""
|
| 17 |
-
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
| 18 |
-
"""
|
| 19 |
-
timestamp = time.time()
|
| 20 |
-
formatted = (
|
| 21 |
-
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
| 22 |
-
f"[INST] {message} {timestamp} [/INST]"
|
| 23 |
-
)
|
| 24 |
-
return formatted
|
| 25 |
-
|
| 26 |
-
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
| 27 |
-
"""
|
| 28 |
-
Generate an enhanced prompt using the new LLM.
|
| 29 |
-
This function yields intermediate results as they are generated.
|
| 30 |
-
"""
|
| 31 |
-
temperature = float(temperature)
|
| 32 |
-
if temperature < 1e-2:
|
| 33 |
-
temperature = 1e-2
|
| 34 |
-
top_p = float(top_p)
|
| 35 |
-
generate_kwargs = {
|
| 36 |
-
"temperature": temperature,
|
| 37 |
-
"max_new_tokens": int(max_new_tokens),
|
| 38 |
-
"top_p": top_p,
|
| 39 |
-
"repetition_penalty": float(repetition_penalty),
|
| 40 |
-
"do_sample": True,
|
| 41 |
-
}
|
| 42 |
-
formatted_prompt = format_prompt(message)
|
| 43 |
-
stream = client.text_generation(
|
| 44 |
-
formatted_prompt,
|
| 45 |
-
**generate_kwargs,
|
| 46 |
-
stream=True,
|
| 47 |
-
details=True,
|
| 48 |
-
return_full_text=False,
|
| 49 |
-
)
|
| 50 |
-
output = ""
|
| 51 |
-
for response in stream:
|
| 52 |
-
token_text = response.token.text
|
| 53 |
-
output += token_text
|
| 54 |
-
yield output.strip('</s>')
|
| 55 |
-
return output.strip('</s>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_app/frontend.py
CHANGED
|
@@ -103,7 +103,7 @@ class Frontend:
|
|
| 103 |
print("Warning: lora.py not found, using placeholder LoRAs.")
|
| 104 |
pass
|
| 105 |
|
| 106 |
-
@spaces.GPU(duration=
|
| 107 |
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
|
| 108 |
randomize_seed, seed, width, height, lora_scale, use_enhancer,
|
| 109 |
progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 103 |
print("Warning: lora.py not found, using placeholder LoRAs.")
|
| 104 |
pass
|
| 105 |
|
| 106 |
+
@spaces.GPU(duration=300)
|
| 107 |
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
|
| 108 |
randomize_seed, seed, width, height, lora_scale, use_enhancer,
|
| 109 |
progress=gr.Progress(track_tqdm=True)):
|
flux_app/frontend_nw.py
DELETED
|
@@ -1,236 +0,0 @@
|
|
| 1 |
-
# frontend.py
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import sys
|
| 4 |
-
import os
|
| 5 |
-
import spaces
|
| 6 |
-
# Add the parent directory to sys.path
|
| 7 |
-
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 8 |
-
sys.path.insert(0, parent_dir)
|
| 9 |
-
#print(sys.path) #DEBUG
|
| 10 |
-
|
| 11 |
-
from flux_app.backend import ModelManager # Absolute import
|
| 12 |
-
from flux_app.config import MAX_SEED # Absolute import
|
| 13 |
-
from flux_app.lora_handling import (
|
| 14 |
-
add_custom_lora, remove_custom_lora, prepare_prompt,
|
| 15 |
-
unload_lora_weights, load_lora_weights_into_pipeline, update_selection
|
| 16 |
-
)
|
| 17 |
-
from flux_app.utilities import randomize_seed_if_needed, calculateDuration # Absolute import
|
| 18 |
-
# Import the prompt enhancer generate function from the new module
|
| 19 |
-
from flux_app.enhance import generate
|
| 20 |
-
|
| 21 |
-
# Dummy loras data for initial UI setup.
|
| 22 |
-
initial_loras = [
|
| 23 |
-
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
|
| 24 |
-
]
|
| 25 |
-
|
| 26 |
-
class Frontend:
|
| 27 |
-
def __init__(self, model_manager: ModelManager):
|
| 28 |
-
self.model_manager = model_manager
|
| 29 |
-
self.loras = initial_loras
|
| 30 |
-
self.load_initial_loras()
|
| 31 |
-
self.css = self.define_css()
|
| 32 |
-
|
| 33 |
-
def define_css(self):
|
| 34 |
-
# A cleaner, professional CSS styling.
|
| 35 |
-
return '''
|
| 36 |
-
/* Title Styling */
|
| 37 |
-
#title {
|
| 38 |
-
text-align: center;
|
| 39 |
-
margin-bottom: 20px;
|
| 40 |
-
}
|
| 41 |
-
#title h1 {
|
| 42 |
-
font-size: 2.5rem;
|
| 43 |
-
margin: 0;
|
| 44 |
-
color: #333;
|
| 45 |
-
}
|
| 46 |
-
/* Button and Column Styling */
|
| 47 |
-
#gen_btn {
|
| 48 |
-
width: 100%;
|
| 49 |
-
padding: 12px;
|
| 50 |
-
font-weight: bold;
|
| 51 |
-
border-radius: 5px;
|
| 52 |
-
}
|
| 53 |
-
#gen_column {
|
| 54 |
-
display: flex;
|
| 55 |
-
align-items: center;
|
| 56 |
-
justify-content: center;
|
| 57 |
-
}
|
| 58 |
-
/* Gallery and List Styling */
|
| 59 |
-
#gallery .grid-wrap {
|
| 60 |
-
margin-top: 15px;
|
| 61 |
-
}
|
| 62 |
-
#lora_list {
|
| 63 |
-
background-color: #f5f5f5;
|
| 64 |
-
padding: 10px;
|
| 65 |
-
border-radius: 4px;
|
| 66 |
-
font-size: 0.9rem;
|
| 67 |
-
}
|
| 68 |
-
.card_internal {
|
| 69 |
-
display: flex;
|
| 70 |
-
align-items: center;
|
| 71 |
-
height: 100px;
|
| 72 |
-
margin-top: 10px;
|
| 73 |
-
}
|
| 74 |
-
.card_internal img {
|
| 75 |
-
margin-right: 10px;
|
| 76 |
-
}
|
| 77 |
-
.styler {
|
| 78 |
-
--form-gap-width: 0px !important;
|
| 79 |
-
}
|
| 80 |
-
/* Progress Bar Styling */
|
| 81 |
-
.progress-container {
|
| 82 |
-
width: 100%;
|
| 83 |
-
height: 20px;
|
| 84 |
-
background-color: #e0e0e0;
|
| 85 |
-
border-radius: 10px;
|
| 86 |
-
overflow: hidden;
|
| 87 |
-
margin-bottom: 20px;
|
| 88 |
-
}
|
| 89 |
-
.progress-bar {
|
| 90 |
-
height: 100%;
|
| 91 |
-
background-color: #4f46e5;
|
| 92 |
-
transition: width 0.3s ease-in-out;
|
| 93 |
-
width: calc(var(--current) / var(--total) * 100%);
|
| 94 |
-
}
|
| 95 |
-
'''
|
| 96 |
-
|
| 97 |
-
def load_initial_loras(self):
|
| 98 |
-
try:
|
| 99 |
-
from flux_app.lora import loras as loras_list # Absolute import
|
| 100 |
-
self.loras = loras_list
|
| 101 |
-
except ImportError:
|
| 102 |
-
print("Warning: lora.py not found, using placeholder LoRAs.")
|
| 103 |
-
pass
|
| 104 |
-
|
| 105 |
-
@spaces.GPU(duration=100)
|
| 106 |
-
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)):
|
| 107 |
-
# If prompt enhancer is enabled, generate the enhanced prompt.
|
| 108 |
-
if use_enhancer:
|
| 109 |
-
enhanced_prompt = ""
|
| 110 |
-
# Generate the enhanced prompt (consume the generator to get the final result)
|
| 111 |
-
for chunk in generate(prompt):
|
| 112 |
-
enhanced_prompt = chunk
|
| 113 |
-
prompt_used = enhanced_prompt
|
| 114 |
-
else:
|
| 115 |
-
enhanced_prompt = ""
|
| 116 |
-
prompt_used = prompt
|
| 117 |
-
|
| 118 |
-
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
|
| 119 |
-
prompt_mash = prepare_prompt(prompt_used, selected_index, self.loras)
|
| 120 |
-
selected_lora = self.loras[selected_index]
|
| 121 |
-
|
| 122 |
-
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
|
| 123 |
-
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
|
| 124 |
-
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
|
| 125 |
-
|
| 126 |
-
if image_input is not None:
|
| 127 |
-
final_image = self.model_manager.generate_image_to_image(
|
| 128 |
-
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
|
| 129 |
-
)
|
| 130 |
-
yield final_image, seed, gr.update(visible=False), enhanced_prompt
|
| 131 |
-
else:
|
| 132 |
-
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
| 133 |
-
final_image = None
|
| 134 |
-
step_counter = 0
|
| 135 |
-
for image in image_generator:
|
| 136 |
-
step_counter += 1
|
| 137 |
-
final_image = image
|
| 138 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 139 |
-
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_prompt
|
| 140 |
-
|
| 141 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_prompt
|
| 142 |
-
|
| 143 |
-
def create_ui(self):
|
| 144 |
-
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
|
| 145 |
-
title = gr.HTML(
|
| 146 |
-
"""<h1>Flux LoRA Generation</h1>""",
|
| 147 |
-
elem_id="title",
|
| 148 |
-
)
|
| 149 |
-
selected_index = gr.State(None)
|
| 150 |
-
|
| 151 |
-
with gr.Row():
|
| 152 |
-
with gr.Column(scale=3):
|
| 153 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
|
| 154 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
| 155 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 156 |
-
with gr.Row():
|
| 157 |
-
with gr.Column():
|
| 158 |
-
selected_info = gr.Markdown("")
|
| 159 |
-
gallery = gr.Gallery(
|
| 160 |
-
[(item["image"], item["title"]) for item in self.loras],
|
| 161 |
-
label="LoRA Collection",
|
| 162 |
-
allow_preview=False,
|
| 163 |
-
columns=3,
|
| 164 |
-
elem_id="gallery",
|
| 165 |
-
show_share_button=False
|
| 166 |
-
)
|
| 167 |
-
with gr.Group():
|
| 168 |
-
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
|
| 169 |
-
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 170 |
-
custom_lora_info = gr.HTML(visible=False)
|
| 171 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 172 |
-
with gr.Column():
|
| 173 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
| 174 |
-
result = gr.Image(label="Generated Image")
|
| 175 |
-
|
| 176 |
-
with gr.Row():
|
| 177 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 178 |
-
with gr.Row():
|
| 179 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
| 180 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
| 181 |
-
with gr.Column():
|
| 182 |
-
with gr.Row():
|
| 183 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 184 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 185 |
-
with gr.Row():
|
| 186 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 187 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 188 |
-
with gr.Row():
|
| 189 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 190 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 191 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 192 |
-
# Prompt Enhancer Section
|
| 193 |
-
with gr.Group():
|
| 194 |
-
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=True)
|
| 195 |
-
show_enhanced_prompt = gr.Checkbox(label="Display Enhanced Prompt", value=False)
|
| 196 |
-
enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", lines=3, visible=False)
|
| 197 |
-
|
| 198 |
-
gallery.select(
|
| 199 |
-
update_selection,
|
| 200 |
-
inputs=[width, height, gr.State(self.loras)],
|
| 201 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
| 202 |
-
)
|
| 203 |
-
custom_lora.input(
|
| 204 |
-
add_custom_lora,
|
| 205 |
-
inputs=[custom_lora, gr.State(self.loras)],
|
| 206 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
| 207 |
-
)
|
| 208 |
-
custom_lora_button.click(
|
| 209 |
-
remove_custom_lora,
|
| 210 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
# Toggle the visibility of the enhanced prompt textbox based on the checkbox state.
|
| 214 |
-
show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
|
| 215 |
-
inputs=show_enhanced_prompt,
|
| 216 |
-
outputs=enhanced_prompt_box)
|
| 217 |
-
|
| 218 |
-
gr.on(
|
| 219 |
-
triggers=[generate_button.click, prompt.submit],
|
| 220 |
-
fn=self.run_lora,
|
| 221 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
|
| 222 |
-
outputs=[result, seed, progress_bar, enhanced_prompt_box]
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
# Credits section added at the bottom
|
| 226 |
-
with gr.Row():
|
| 227 |
-
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
|
| 228 |
-
|
| 229 |
-
return app
|
| 230 |
-
|
| 231 |
-
if __name__ == "__main__":
|
| 232 |
-
model_manager = ModelManager()
|
| 233 |
-
frontend = Frontend(model_manager)
|
| 234 |
-
app = frontend.create_ui()
|
| 235 |
-
app.queue()
|
| 236 |
-
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_app/frontend_v1.py
DELETED
|
@@ -1,216 +0,0 @@
|
|
| 1 |
-
# frontend.py
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import sys
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
# Add the parent directory to sys.path
|
| 7 |
-
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 8 |
-
sys.path.insert(0, parent_dir)
|
| 9 |
-
#print(sys.path) #DEBUG
|
| 10 |
-
|
| 11 |
-
from flux_app.backend import ModelManager # Absolute import
|
| 12 |
-
from flux_app.config import MAX_SEED # Absolute import
|
| 13 |
-
from flux_app.lora_handling import (
|
| 14 |
-
add_custom_lora, remove_custom_lora, prepare_prompt,
|
| 15 |
-
unload_lora_weights, load_lora_weights_into_pipeline, update_selection
|
| 16 |
-
)
|
| 17 |
-
from flux_app.utilities import randomize_seed_if_needed, calculateDuration # Absolute import
|
| 18 |
-
import spaces
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Dummy loras data for initial UI setup.
|
| 22 |
-
initial_loras = [
|
| 23 |
-
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
|
| 24 |
-
]
|
| 25 |
-
|
| 26 |
-
class Frontend:
|
| 27 |
-
def __init__(self, model_manager: ModelManager):
|
| 28 |
-
self.model_manager = model_manager
|
| 29 |
-
self.loras = initial_loras
|
| 30 |
-
self.load_initial_loras()
|
| 31 |
-
self.css = self.define_css()
|
| 32 |
-
|
| 33 |
-
def define_css(self):
|
| 34 |
-
# A cleaner, professional CSS styling.
|
| 35 |
-
return '''
|
| 36 |
-
/* Title Styling */
|
| 37 |
-
#title {
|
| 38 |
-
text-align: center;
|
| 39 |
-
margin-bottom: 20px;
|
| 40 |
-
}
|
| 41 |
-
#title h1 {
|
| 42 |
-
font-size: 2.5rem;
|
| 43 |
-
margin: 0;
|
| 44 |
-
color: #333;
|
| 45 |
-
}
|
| 46 |
-
/* Button and Column Styling */
|
| 47 |
-
#gen_btn {
|
| 48 |
-
width: 100%;
|
| 49 |
-
padding: 12px;
|
| 50 |
-
font-weight: bold;
|
| 51 |
-
border-radius: 5px;
|
| 52 |
-
}
|
| 53 |
-
#gen_column {
|
| 54 |
-
display: flex;
|
| 55 |
-
align-items: center;
|
| 56 |
-
justify-content: center;
|
| 57 |
-
}
|
| 58 |
-
/* Gallery and List Styling */
|
| 59 |
-
#gallery .grid-wrap {
|
| 60 |
-
margin-top: 15px;
|
| 61 |
-
}
|
| 62 |
-
#lora_list {
|
| 63 |
-
background-color: #f5f5f5;
|
| 64 |
-
padding: 10px;
|
| 65 |
-
border-radius: 4px;
|
| 66 |
-
font-size: 0.9rem;
|
| 67 |
-
}
|
| 68 |
-
.card_internal {
|
| 69 |
-
display: flex;
|
| 70 |
-
align-items: center;
|
| 71 |
-
height: 100px;
|
| 72 |
-
margin-top: 10px;
|
| 73 |
-
}
|
| 74 |
-
.card_internal img {
|
| 75 |
-
margin-right: 10px;
|
| 76 |
-
}
|
| 77 |
-
.styler {
|
| 78 |
-
--form-gap-width: 0px !important;
|
| 79 |
-
}
|
| 80 |
-
/* Progress Bar Styling */
|
| 81 |
-
.progress-container {
|
| 82 |
-
width: 100%;
|
| 83 |
-
height: 20px;
|
| 84 |
-
background-color: #e0e0e0;
|
| 85 |
-
border-radius: 10px;
|
| 86 |
-
overflow: hidden;
|
| 87 |
-
margin-bottom: 20px;
|
| 88 |
-
}
|
| 89 |
-
.progress-bar {
|
| 90 |
-
height: 100%;
|
| 91 |
-
background-color: #4f46e5;
|
| 92 |
-
transition: width 0.3s ease-in-out;
|
| 93 |
-
width: calc(var(--current) / var(--total) * 100%);
|
| 94 |
-
}
|
| 95 |
-
'''
|
| 96 |
-
|
| 97 |
-
def load_initial_loras(self):
|
| 98 |
-
try:
|
| 99 |
-
from flux_app.lora import loras as loras_list # Absolute import
|
| 100 |
-
self.loras = loras_list
|
| 101 |
-
except ImportError:
|
| 102 |
-
print("Warning: lora.py not found, using placeholder LoRAs.")
|
| 103 |
-
pass
|
| 104 |
-
|
| 105 |
-
@spaces.GPU(duration=100)
|
| 106 |
-
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 107 |
-
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
|
| 108 |
-
prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
|
| 109 |
-
selected_lora = self.loras[selected_index]
|
| 110 |
-
|
| 111 |
-
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
|
| 112 |
-
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
|
| 113 |
-
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
|
| 114 |
-
|
| 115 |
-
if image_input is not None:
|
| 116 |
-
final_image = self.model_manager.generate_image_to_image(
|
| 117 |
-
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
|
| 118 |
-
)
|
| 119 |
-
yield final_image, seed, gr.update(visible=False)
|
| 120 |
-
else:
|
| 121 |
-
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
| 122 |
-
final_image = None
|
| 123 |
-
step_counter = 0
|
| 124 |
-
for image in image_generator:
|
| 125 |
-
step_counter += 1
|
| 126 |
-
final_image = image
|
| 127 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 128 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 129 |
-
|
| 130 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 131 |
-
|
| 132 |
-
def create_ui(self):
|
| 133 |
-
# Using a base theme for a clean and professional look.
|
| 134 |
-
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
|
| 135 |
-
title = gr.HTML(
|
| 136 |
-
"""<h1>Flux LoRA Generation</h1>""",
|
| 137 |
-
elem_id="title",
|
| 138 |
-
)
|
| 139 |
-
selected_index = gr.State(None)
|
| 140 |
-
|
| 141 |
-
with gr.Row():
|
| 142 |
-
with gr.Column(scale=3):
|
| 143 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
|
| 144 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
| 145 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 146 |
-
with gr.Row():
|
| 147 |
-
with gr.Column():
|
| 148 |
-
selected_info = gr.Markdown("")
|
| 149 |
-
gallery = gr.Gallery(
|
| 150 |
-
[(item["image"], item["title"]) for item in self.loras],
|
| 151 |
-
label="LoRA Collection",
|
| 152 |
-
allow_preview=False,
|
| 153 |
-
columns=3,
|
| 154 |
-
elem_id="gallery",
|
| 155 |
-
show_share_button=False
|
| 156 |
-
)
|
| 157 |
-
with gr.Group():
|
| 158 |
-
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
|
| 159 |
-
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 160 |
-
custom_lora_info = gr.HTML(visible=False)
|
| 161 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 162 |
-
with gr.Column():
|
| 163 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
| 164 |
-
result = gr.Image(label="Generated Image")
|
| 165 |
-
|
| 166 |
-
with gr.Row():
|
| 167 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 168 |
-
with gr.Row():
|
| 169 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
| 170 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
| 171 |
-
with gr.Column():
|
| 172 |
-
with gr.Row():
|
| 173 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 174 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 175 |
-
with gr.Row():
|
| 176 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 177 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 178 |
-
with gr.Row():
|
| 179 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 180 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 181 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 182 |
-
|
| 183 |
-
gallery.select(
|
| 184 |
-
update_selection,
|
| 185 |
-
inputs=[width, height, gr.State(self.loras)],
|
| 186 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
| 187 |
-
)
|
| 188 |
-
custom_lora.input(
|
| 189 |
-
add_custom_lora,
|
| 190 |
-
inputs=[custom_lora, gr.State(self.loras)],
|
| 191 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
| 192 |
-
)
|
| 193 |
-
custom_lora_button.click(
|
| 194 |
-
remove_custom_lora,
|
| 195 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
gr.on(
|
| 199 |
-
triggers=[generate_button.click, prompt.submit],
|
| 200 |
-
fn=self.run_lora,
|
| 201 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 202 |
-
outputs=[result, seed, progress_bar]
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
# Credits section added at the bottom
|
| 206 |
-
with gr.Row():
|
| 207 |
-
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
|
| 208 |
-
|
| 209 |
-
return app
|
| 210 |
-
|
| 211 |
-
if __name__ == "__main__":
|
| 212 |
-
model_manager = ModelManager()
|
| 213 |
-
frontend = Frontend(model_manager)
|
| 214 |
-
app = frontend.create_ui()
|
| 215 |
-
app.queue()
|
| 216 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|