|
|
|
import torch |
|
from typing import Any, Dict, List, Optional, Union |
|
import gradio as gr |
|
from huggingface_hub import ModelCard, HfFileSystem |
|
from flux_app.utilities import calculate_shift, retrieve_timesteps, calculateDuration |
|
import numpy as np |
|
from PIL import Image |
|
import copy |
|
from flux_app.lora import loras |
|
|
|
@torch.inference_mode() |
|
def flux_pipe_call_that_returns_an_iterable_of_images( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
max_sequence_length: int = 512, |
|
good_vae: Optional[Any] = None, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None |
|
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
self._num_timesteps = len(timesteps) |
|
|
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None |
|
|
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents_for_image, return_dict=False)[0] |
|
yield self.image_processor.postprocess(image, output_type=output_type)[0] |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
torch.cuda.empty_cache() |
|
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor |
|
image = good_vae.decode(latents, return_dict=False)[0] |
|
self.maybe_free_model_hooks() |
|
torch.cuda.empty_cache() |
|
yield self.image_processor.postprocess(image, output_type=output_type)[0] |
|
|
|
|
|
def get_huggingface_safetensors(link: str) -> tuple[str, str, str, str, str]: |
|
""" |
|
Extracts LoRA information from a Hugging Face model card. |
|
|
|
Args: |
|
link: The Hugging Face model repository URL or ID (e.g., "user/repo" or |
|
"https://huggingface.co/user/repo"). |
|
|
|
Returns: |
|
A tuple containing: |
|
- title (str): The repository name. |
|
- repo (str): The full repository ID ("user/repo"). |
|
- path (str): The filename of the .safetensors file. |
|
- trigger_word (str): The instance prompt (trigger word) from the model card. |
|
- image_url (str): URL of a preview image, if found. |
|
|
|
Raises: |
|
Exception: If the provided link is not a valid FLUX LoRA repository. |
|
""" |
|
split_link = link.split("/") |
|
if len(split_link) == 2: |
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(base_model) |
|
|
|
|
|
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"): |
|
raise Exception("Flux LoRA Not Found!") |
|
|
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
fs = HfFileSystem() |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
for file in list_of_files: |
|
if file.endswith(".safetensors"): |
|
safetensors_name = file.split("/")[-1] |
|
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): |
|
image_elements = file.split("/") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
except Exception as e: |
|
print(e) |
|
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
else: |
|
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") |
|
|
|
def check_custom_model(link: str) -> tuple[str, str, str, str, str]: |
|
""" |
|
Checks if the provided link is a Hugging Face URL and extracts LoRA info. |
|
|
|
Args: |
|
link: The URL or repository ID. |
|
|
|
Returns: |
|
The same tuple as `get_huggingface_safetensors`. |
|
""" |
|
if link.startswith("https://"): |
|
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
return get_huggingface_safetensors(link) |
|
|
|
|
|
|
|
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str: |
|
""" |
|
Generates HTML for a LoRA card in the Gradio UI. |
|
""" |
|
trigger_word_info = ( |
|
f"Using: <code><b>{trigger_word}</code></b> as the trigger word" |
|
if trigger_word |
|
else "No trigger word found. If there's a trigger word, include it in your prompt" |
|
) |
|
return f''' |
|
<div class="custom_lora_card"> |
|
<span>Loaded custom LoRA:</span> |
|
<div class="card_internal"> |
|
<img src="{image}" /> |
|
<div> |
|
<h3>{title}</h3> |
|
<small>{trigger_word_info}<br></small> |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
|
|
def add_custom_lora(custom_lora: str, loras: list) -> tuple: |
|
"""Adds a custom LoRA to the list of available LoRAs.""" |
|
if custom_lora: |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Loaded custom LoRA: {repo}") |
|
card = create_lora_card(title, repo, trigger_word, image) |
|
|
|
|
|
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) |
|
if existing_item_index is None: |
|
new_item = { |
|
"image": image, |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word |
|
} |
|
print(new_item) |
|
loras.append(new_item) |
|
existing_item_index = len(loras) -1 |
|
|
|
|
|
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word |
|
|
|
except Exception as e: |
|
print(f"Error loading LoRA: {e}") |
|
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
|
|
|
|
def remove_custom_lora() -> tuple: |
|
"""Removes the custom LoRA from the UI.""" |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" |
|
|
|
def prepare_prompt(prompt: str, selected_index: Optional[int], loras: List[Dict]) -> str: |
|
"""Combines the user prompt with the LoRA trigger word.""" |
|
if selected_index is None: |
|
raise gr.Error("You must select a LoRA before proceeding.🧨") |
|
|
|
selected_lora = loras[selected_index] |
|
trigger_word = selected_lora.get("trigger_word") |
|
|
|
if trigger_word: |
|
trigger_position = selected_lora.get("trigger_position", "append") |
|
if trigger_position == "prepend": |
|
prompt_mash = f"{trigger_word} {prompt}" |
|
else: |
|
prompt_mash = f"{prompt} {trigger_word}" |
|
else: |
|
prompt_mash = prompt |
|
return prompt_mash |
|
|
|
def unload_lora_weights(pipe, pipe_i2i): |
|
"""Unloads LoRA weights from both pipelines.""" |
|
if pipe is not None: |
|
pipe.unload_lora_weights() |
|
if pipe_i2i is not None: |
|
pipe_i2i.unload_lora_weights() |
|
|
|
|
|
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]): |
|
"""Loads LoRA weights into the specified pipeline.""" |
|
pipe_to_use.load_lora_weights( |
|
lora_path, |
|
weight_name=weight_name, |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
|
|
def update_selection(evt: gr.SelectData, width, height, loras): |
|
"""Updates the UI when a LoRA is selected from the gallery.""" |
|
selected_lora = loras[evt.index] |
|
new_placeholder = f"Type a prompt for {selected_lora['title']}" |
|
lora_repo = selected_lora["repo"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" |
|
if "aspect" in selected_lora: |
|
if selected_lora["aspect"] == "portrait": |
|
width = 768 |
|
height = 1024 |
|
elif selected_lora["aspect"] == "landscape": |
|
width = 1024 |
|
height = 768 |
|
else: |
|
width = 1024 |
|
height = 1024 |
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
evt.index, |
|
width, |
|
height, |
|
) |