|
import time |
|
import requests |
|
import json |
|
|
|
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0): |
|
""" |
|
Generates an enhanced prompt using the streaming inference mechanism from a Hugging Face API endpoint. |
|
This function formats the prompt with a system instruction, sends a streaming request to the API, |
|
and yields the accumulated text as tokens are received. |
|
|
|
Parameters: |
|
message (str): The user's input prompt. |
|
max_new_tokens (int): The maximum number of tokens to generate. |
|
temperature (float): Sampling temperature. |
|
top_p (float): Nucleus sampling parameter. |
|
repetition_penalty (float): Penalty factor for repetition (not used in the payload but kept for API consistency). |
|
|
|
Yields: |
|
str: The accumulated generated text as it streams in. |
|
""" |
|
|
|
SYSTEM_PROMPT = ( |
|
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words " |
|
"without changing the essence, only write the enhanced prompt and nothing else." |
|
) |
|
|
|
timestamp = time.time() |
|
formatted_prompt = ( |
|
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" |
|
f"[INST] {message} {timestamp} [/INST]" |
|
) |
|
|
|
|
|
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions" |
|
headers = {"Content-Type": "application/json"} |
|
|
|
|
|
payload = { |
|
"model": "mixtral-8x7b", |
|
"messages": [{"role": "user", "content": formatted_prompt}], |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_new_tokens, |
|
"use_cache": False, |
|
"stream": True |
|
} |
|
|
|
try: |
|
response = requests.post(api_url, headers=headers, json=payload, stream=True) |
|
response.raise_for_status() |
|
full_output = "" |
|
|
|
|
|
for line in response.iter_lines(): |
|
if not line: |
|
continue |
|
|
|
decoded_line = line.decode("utf-8").strip() |
|
|
|
if decoded_line.startswith("data:"): |
|
decoded_line = decoded_line[len("data:"):].strip() |
|
|
|
|
|
if decoded_line == "[DONE]": |
|
break |
|
|
|
try: |
|
json_data = json.loads(decoded_line) |
|
for choice in json_data.get("choices", []): |
|
delta = choice.get("delta", {}) |
|
content = delta.get("content", "") |
|
full_output += content |
|
yield full_output |
|
|
|
|
|
if choice.get("finish_reason") == "stop": |
|
return |
|
except json.JSONDecodeError: |
|
|
|
continue |
|
except requests.exceptions.RequestException as e: |
|
yield f"Error during generation: {str(e)}" |
|
|