Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -55,7 +55,11 @@ def query(payload, api_url):
|
|
55 |
logger.info(f"Sending request to {api_url} with payload: {payload}")
|
56 |
response = requests.post(api_url, headers=headers, json=payload)
|
57 |
logger.info(f"Received response: {response.status_code}, {response.text}")
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Chat interface
|
61 |
st.title("🤖 DeepSeek Chatbot")
|
@@ -76,11 +80,10 @@ if prompt := st.chat_input("Type your message..."):
|
|
76 |
try:
|
77 |
with st.spinner("Generating response..."):
|
78 |
# Prepare the payload for the API
|
|
|
|
|
79 |
payload = {
|
80 |
-
"inputs":
|
81 |
-
"system_message": system_message,
|
82 |
-
"user_message": prompt
|
83 |
-
},
|
84 |
"parameters": {
|
85 |
"max_new_tokens": max_tokens,
|
86 |
"temperature": temperature,
|
@@ -92,22 +95,26 @@ if prompt := st.chat_input("Type your message..."):
|
|
92 |
# Dynamically construct the API URL based on the selected model
|
93 |
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
|
94 |
logger.info(f"Selected model: {selected_model}, API URL: {api_url}")
|
95 |
-
print("payload
|
96 |
# Query the Hugging Face API using the selected model
|
97 |
output = query(payload, api_url)
|
98 |
|
99 |
# Handle API response
|
100 |
-
if isinstance(output, list) and len(output) > 0
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
st.
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
-
logger.error(f"
|
110 |
-
st.error("Error: Unable to generate a response. Please try again.")
|
111 |
|
112 |
except Exception as e:
|
113 |
logger.error(f"Application Error: {str(e)}", exc_info=True)
|
|
|
55 |
logger.info(f"Sending request to {api_url} with payload: {payload}")
|
56 |
response = requests.post(api_url, headers=headers, json=payload)
|
57 |
logger.info(f"Received response: {response.status_code}, {response.text}")
|
58 |
+
try:
|
59 |
+
return response.json()
|
60 |
+
except requests.exceptions.JSONDecodeError:
|
61 |
+
logger.error(f"Failed to decode JSON response: {response.text}")
|
62 |
+
return None
|
63 |
|
64 |
# Chat interface
|
65 |
st.title("🤖 DeepSeek Chatbot")
|
|
|
80 |
try:
|
81 |
with st.spinner("Generating response..."):
|
82 |
# Prepare the payload for the API
|
83 |
+
# Combine system message and user input into a single prompt
|
84 |
+
full_prompt = f"{system_message}\n\nUser: {prompt}\nAssistant:"
|
85 |
payload = {
|
86 |
+
"inputs": full_prompt,
|
|
|
|
|
|
|
87 |
"parameters": {
|
88 |
"max_new_tokens": max_tokens,
|
89 |
"temperature": temperature,
|
|
|
95 |
# Dynamically construct the API URL based on the selected model
|
96 |
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
|
97 |
logger.info(f"Selected model: {selected_model}, API URL: {api_url}")
|
98 |
+
print("payload",payload)
|
99 |
# Query the Hugging Face API using the selected model
|
100 |
output = query(payload, api_url)
|
101 |
|
102 |
# Handle API response
|
103 |
+
if output is not None and isinstance(output, list) and len(output) > 0:
|
104 |
+
if 'generated_text' in output[0]:
|
105 |
+
assistant_response = output[0]['generated_text']
|
106 |
+
logger.info(f"Generated response: {assistant_response}")
|
107 |
+
|
108 |
+
with st.chat_message("assistant"):
|
109 |
+
st.markdown(assistant_response)
|
110 |
+
|
111 |
+
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
|
112 |
+
else:
|
113 |
+
logger.error(f"Unexpected API response structure: {output}")
|
114 |
+
st.error("Error: Unexpected response from the model. Please try again.")
|
115 |
else:
|
116 |
+
logger.error(f"Empty or invalid API response: {output}")
|
117 |
+
st.error("Error: Unable to generate a response. Please check the model and try again.")
|
118 |
|
119 |
except Exception as e:
|
120 |
logger.error(f"Application Error: {str(e)}", exc_info=True)
|