File size: 2,414 Bytes
3b55d4b
9ab0176
94576e1
 
 
 
76792d2
e72ed81
 
 
 
 
51e9476
 
e72ed81
 
 
 
94576e1
e72ed81
 
76792d2
e72ed81
 
 
 
 
 
76792d2
e72ed81
76792d2
789e9e5
e72ed81
 
 
 
 
76792d2
e72ed81
 
 
 
 
 
 
76792d2
e72ed81
 
 
 
 
 
 
 
 
 
94576e1
e72ed81
 
 
 
 
 
 
 
 
 
76792d2
e72ed81
 
 
76792d2
e72ed81
94576e1
e72ed81
d212f4f
94576e1
d212f4f
 
76792d2
 
51e9476
76792d2
e72ed81
 
 
76792d2
e72ed81
 
76792d2
77c7a99
789e9e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# app.py
import streamlit as st
from models import load_model

# Load the model once
demo = load_model()

# Page configuration
st.set_page_config(
    page_title="DeepSeek Chatbot - ruslanmv.com",
    page_icon="🤖",
    layout="centered"
)

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Sidebar for model parameters
with st.sidebar:
    st.header("Model Configuration")
    
    # System message
    system_message = st.text_area(
        "System Message",
        value="You are a friendly Chatbot created by ruslanmv.com",
        height=100
    )
    
    # Generation parameters
    max_tokens = st.slider(
        "Max Tokens",
        min_value=1,
        max_value=4000,
        value=512,
        step=10
    )
    
    temperature = st.slider(
        "Temperature",
        min_value=0.1,
        max_value=4.0,
        value=0.7,
        step=0.1
    )
    
    top_p = st.slider(
        "Top-p (nucleus sampling)",
        min_value=0.1,
        max_value=1.0,
        value=0.9,
        step=0.1
    )

# Main chat interface
st.title("🤖 DeepSeek Chatbot")
st.caption("Powered by ruslanmv.com - Configure parameters in the sidebar")

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Chat input
if prompt := st.chat_input("Type your message..."):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    # Display user message
    with st.chat_message("user"):
        st.markdown(prompt)
    
    try:
        # Generate response using the model
        with st.spinner("Generating response..."):
            # Pass inputs as positional arguments to the Gradio model
            response = demo(
                f"{system_message}\n\nUser: {prompt}\nAssistant:",
                max_length=max_tokens,  # Gradio parameter
                temperature=temperature,
                top_p=top_p
            )
        
        # Display assistant response
        with st.chat_message("assistant"):
            st.markdown(response)
        
        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})
    
    except Exception as e:
        st.error(f"An error occurred: {str(e)}")