Spaces:
Running
Running
File size: 2,414 Bytes
3b55d4b 9ab0176 94576e1 76792d2 e72ed81 51e9476 e72ed81 94576e1 e72ed81 76792d2 e72ed81 76792d2 e72ed81 76792d2 789e9e5 e72ed81 76792d2 e72ed81 76792d2 e72ed81 94576e1 e72ed81 76792d2 e72ed81 76792d2 e72ed81 94576e1 e72ed81 d212f4f 94576e1 d212f4f 76792d2 51e9476 76792d2 e72ed81 76792d2 e72ed81 76792d2 77c7a99 789e9e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# app.py
import streamlit as st
from models import load_model
# Load the model once
demo = load_model()
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="🤖",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar for model parameters
with st.sidebar:
st.header("Model Configuration")
# System message
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
# Generation parameters
max_tokens = st.slider(
"Max Tokens",
min_value=1,
max_value=4000,
value=512,
step=10
)
temperature = st.slider(
"Temperature",
min_value=0.1,
max_value=4.0,
value=0.7,
step=0.1
)
top_p = st.slider(
"Top-p (nucleus sampling)",
min_value=0.1,
max_value=1.0,
value=0.9,
step=0.1
)
# Main chat interface
st.title("🤖 DeepSeek Chatbot")
st.caption("Powered by ruslanmv.com - Configure parameters in the sidebar")
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Type your message..."):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
try:
# Generate response using the model
with st.spinner("Generating response..."):
# Pass inputs as positional arguments to the Gradio model
response = demo(
f"{system_message}\n\nUser: {prompt}\nAssistant:",
max_length=max_tokens, # Gradio parameter
temperature=temperature,
top_p=top_p
)
# Display assistant response
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
except Exception as e:
st.error(f"An error occurred: {str(e)}")
|