Spaces:
Running
Running
File size: 4,463 Bytes
f1fef64 317e409 f70fc29 539566d c2dfdca f70fc29 317e409 f70fc29 539566d f70fc29 317e409 f70fc29 317e409 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca a26f5ee f70fc29 c2dfdca f70fc29 c2dfdca f70fc29 c2dfdca 317e409 f70fc29 f1fef64 2b3ca21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import gradio as gr
# Placeholder for model loading (adjust as needed for your specific models)
def load_model(model_name):
print(f"Loading {model_name}...")
# Simulate different model behaviors (replace with actual model logic)
if model_name == "DeepSeek-R1-Distill-Qwen-32B":
return lambda input_text, history: f"Distilled Model Response to: {input_text}"
elif model_name == "DeepSeek-R1":
return lambda input_text, history: f"Base Model Response to: {input_text}"
elif model_name == "DeepSeek-R1-Zero":
return lambda input_text, history: f"Zero Model Response to: {input_text}"
else:
return lambda input_text, history: f"Default Response to: {input_text}"
# Load the models (placeholder functions here)
deepseek_r1_distill = load_model("DeepSeek-R1-Distill-Qwen-32B")
deepseek_r1 = load_model("DeepSeek-R1")
deepseek_r1_zero = load_model("DeepSeek-R1-Zero")
# --- Chatbot function ---
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p):
history = history or []
print(f"Input: {input_text}, History: {history}, Model: {model_choice}")
# Choose the model based on user selection
if model_choice == "DeepSeek-R1-Distill-Qwen-32B":
model_function = deepseek_r1_distill
elif model_choice == "DeepSeek-R1":
model_function = deepseek_r1
elif model_choice == "DeepSeek-R1-Zero":
model_function = deepseek_r1_zero
else:
model_function = lambda x, h: "Please select a model."
# Simulate model response with parameters
response = model_function(input_text, history)
# Format the response for display (without parameter details in the main chat)
display_response = f"{response}"
history.append((input_text, display_response))
return history, history, "", model_choice, system_message, max_new_tokens, temperature, top_p # Clear input, keep other parameters
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# DeepSeek Chatbot
Created by [ruslanmv.com](https://ruslanmv.com/)
This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit".
You can also adjust optional parameters like system message, max new tokens, temperature, and top-p.
"""
)
with gr.Row():
with gr.Column():
chatbot_output = gr.Chatbot(label="DeepSeek Chatbot", height=500)
msg = gr.Textbox(label="Your Message", placeholder="Type your message here...")
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.ClearButton([msg, chatbot_output])
# Options moved below the chat interface
with gr.Row():
with gr.Accordion("Options", open=True): # Changed label to "Options"
model_choice = gr.Radio(
choices=["DeepSeek-R1-Distill-Qwen-32B", "DeepSeek-R1", "DeepSeek-R1-Zero"],
label="Choose a Model",
value="DeepSeek-R1"
)
with gr.Accordion("Optional Parameters", open=False):
system_message = gr.Textbox(
label="System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
lines=2,
)
max_new_tokens = gr.Slider(
minimum=1, maximum=4000, value=200, label="Max New Tokens"
)
temperature = gr.Slider(
minimum=0.10, maximum=4.00, value=0.70, label="Temperature"
)
top_p = gr.Slider(
minimum=0.10, maximum=1.00, value=0.90, label="Top-p (nucleus sampling)"
)
# Maintain chat history
chat_history = gr.State([])
# Event handling
submit_btn.click(
chatbot,
[msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p],
[chatbot_output, chat_history, msg, model_choice, system_message, max_new_tokens, temperature, top_p],
)
msg.submit(
chatbot,
[msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p],
[chatbot_output, chat_history, msg, model_choice, system_message, max_new_tokens, temperature, top_p],
)
# Launch the demo
if __name__ == "__main__":
demo.launch() |