Spaces:
Build error
Build error
Ruslan Magana Vsevolodovna
commited on
Commit
·
ee9686a
1
Parent(s):
e36bae7
fixing quality audio
Browse files- app.py +121 -38
- requirements.txt +0 -0
app.py
CHANGED
|
@@ -1,26 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
|
|
|
| 3 |
import sys
|
| 4 |
-
import
|
| 5 |
-
import string
|
| 6 |
-
import numpy as np
|
| 7 |
-
import IPython
|
| 8 |
-
from IPython.display import Audio
|
| 9 |
-
import torch
|
| 10 |
-
import argparse
|
| 11 |
-
import os
|
| 12 |
from pathlib import Path
|
| 13 |
-
import
|
| 14 |
import numpy as np
|
| 15 |
-
import soundfile as sf
|
| 16 |
import torch
|
| 17 |
from encoder import inference as encoder
|
| 18 |
-
from encoder.params_model import model_embedding_size as speaker_embedding_size
|
| 19 |
from synthesizer.inference import Synthesizer
|
| 20 |
-
from
|
| 21 |
-
from utils.default_models import ensure_default_models
|
| 22 |
from vocoder import inference as vocoder
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
parser = argparse.ArgumentParser(
|
| 25 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
| 26 |
)
|
|
@@ -43,6 +41,16 @@ args = parser.parse_args()
|
|
| 43 |
arg_dict = vars(args)
|
| 44 |
print_args(args, parser)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# Hide GPUs from Pytorch to force CPU processing
|
| 47 |
if arg_dict.pop("cpu"):
|
| 48 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
|
@@ -67,65 +75,137 @@ else:
|
|
| 67 |
## Load the models one by one.
|
| 68 |
print("Preparing the encoder, the synthesizer and the vocoder...")
|
| 69 |
ensure_default_models(Path("saved_models"))
|
| 70 |
-
encoder.load_model(args.enc_model_fpath)
|
| 71 |
-
synthesizer = Synthesizer(args.syn_model_fpath)
|
| 72 |
-
vocoder.load_model(args.voc_model_fpath)
|
| 73 |
|
| 74 |
def compute_embedding(in_fpath):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
## Computing the embedding
|
| 76 |
# First, we load the wav using the function that the speaker encoder provides. This is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# important: there is preprocessing that must be applied.
|
| 78 |
|
| 79 |
# The following two methods are equivalent:
|
| 80 |
# - Directly load from the filepath:
|
| 81 |
-
preprocessed_wav = encoder.preprocess_wav(
|
|
|
|
| 82 |
# - If the wav is already loaded:
|
| 83 |
-
original_wav, sampling_rate = librosa.load(str(in_fpath))
|
| 84 |
-
preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
print("Loaded file succesfully")
|
| 86 |
|
| 87 |
# Then we derive the embedding. There are many functions and parameters that the
|
| 88 |
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
|
| 89 |
# only use this function (with its default parameters):
|
| 90 |
-
embed = encoder.embed_utterance(preprocessed_wav)
|
| 91 |
|
| 92 |
return embed
|
| 93 |
-
def create_spectrogram(text,embed
|
| 94 |
# If seed is specified, reset torch seed and force synthesizer reload
|
| 95 |
if args.seed is not None:
|
| 96 |
torch.manual_seed(args.seed)
|
| 97 |
synthesizer = Synthesizer(args.syn_model_fpath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# The synthesizer works in batch, so you need to put your data in a list or numpy array
|
| 99 |
texts = [text]
|
| 100 |
embeds = [embed]
|
| 101 |
# If you know what the attention layer alignments are, you can retrieve them here by
|
| 102 |
# passing return_alignments=True
|
| 103 |
specs = synthesizer.synthesize_spectrograms(texts, embeds)
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
def generate_waveform(spec):
|
| 108 |
## Generating the waveform
|
| 109 |
print("Synthesizing the waveform:")
|
| 110 |
# If seed is specified, reset torch seed and reload vocoder
|
| 111 |
if args.seed is not None:
|
| 112 |
torch.manual_seed(args.seed)
|
| 113 |
vocoder.load_model(args.voc_model_fpath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
|
| 115 |
# spectrogram, the more time-efficient the vocoder.
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
## Post-generation
|
| 119 |
# There's a bug with sounddevice that makes the audio cut one second earlier, so we
|
| 120 |
# pad it.
|
| 121 |
-
generated_wav = np.pad(generated_wav, (0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
|
| 124 |
generated_wav = encoder.preprocess_wav(generated_wav)
|
|
|
|
|
|
|
| 125 |
return generated_wav
|
| 126 |
|
| 127 |
|
| 128 |
-
def save_on_disk(generated_wav,
|
| 129 |
# Save it on the disk
|
| 130 |
filename = "cloned_voice.wav"
|
| 131 |
print(generated_wav.dtype)
|
|
@@ -135,41 +215,43 @@ def save_on_disk(generated_wav,synthesizer):
|
|
| 135 |
#result = os.path.join(OUT, filename)
|
| 136 |
result = filename
|
| 137 |
print(" > Saving output to {}".format(result))
|
| 138 |
-
sf.write(result, generated_wav.astype(np.float32),
|
| 139 |
print("\nSaved output as %s\n\n" % result)
|
| 140 |
|
| 141 |
return result
|
| 142 |
-
def play_audio(generated_wav,
|
| 143 |
# Play the audio (non-blocking)
|
| 144 |
if not args.no_sound:
|
| 145 |
|
| 146 |
try:
|
| 147 |
sd.stop()
|
| 148 |
-
sd.play(generated_wav,
|
| 149 |
except sd.PortAudioError as e:
|
| 150 |
print("\nCaught exception: %s" % repr(e))
|
| 151 |
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
|
| 152 |
except:
|
| 153 |
raise
|
| 154 |
|
| 155 |
-
def clone_voice(in_fpath, text
|
| 156 |
try:
|
|
|
|
| 157 |
# Compute embedding
|
| 158 |
embed=compute_embedding(in_fpath)
|
| 159 |
print("Created the embedding")
|
| 160 |
# Generating the spectrogram
|
| 161 |
-
spec = create_spectrogram(text,embed
|
|
|
|
| 162 |
print("Created the mel spectrogram")
|
| 163 |
|
| 164 |
# Create waveform
|
| 165 |
-
generated_wav=generate_waveform(
|
| 166 |
print("Created the the waveform ")
|
| 167 |
|
| 168 |
# Save it on the disk
|
| 169 |
-
save_on_disk(generated_wav,
|
| 170 |
|
| 171 |
#Play the audio
|
| 172 |
-
#play_audio(generated_wav,
|
| 173 |
|
| 174 |
return
|
| 175 |
except Exception as e:
|
|
@@ -214,7 +296,7 @@ def greet(Text,Voicetoclone):
|
|
| 214 |
in_fpath = Path(Voicetoclone)
|
| 215 |
#in_fpath= in_fpath.replace("\"", "").replace("\'", "")
|
| 216 |
|
| 217 |
-
out_path=clone_voice(in_fpath, text
|
| 218 |
|
| 219 |
print(" > text: {}".format(text))
|
| 220 |
|
|
@@ -228,6 +310,7 @@ demo = gr.Interface(
|
|
| 228 |
type="filepath",
|
| 229 |
source="upload",
|
| 230 |
label='Please upload a voice to clone (max. 30mb)')
|
|
|
|
| 231 |
],
|
| 232 |
outputs="audio",
|
| 233 |
|
|
@@ -242,7 +325,7 @@ demo = gr.Interface(
|
|
| 242 |
</div>''',
|
| 243 |
|
| 244 |
examples = [
|
| 245 |
-
["I am the cloned version of Donald Trump.Well, I think what's happening to this country is unbelievably bad. We're no longer a respected country" ,"trump.mp3"]
|
| 246 |
|
| 247 |
]
|
| 248 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
+
from utils.default_models import ensure_default_models
|
| 4 |
import sys
|
| 5 |
+
import traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from pathlib import Path
|
| 7 |
+
from time import perf_counter as timer
|
| 8 |
import numpy as np
|
|
|
|
| 9 |
import torch
|
| 10 |
from encoder import inference as encoder
|
|
|
|
| 11 |
from synthesizer.inference import Synthesizer
|
| 12 |
+
#from toolbox.utterance import Utterance
|
|
|
|
| 13 |
from vocoder import inference as vocoder
|
| 14 |
+
import time
|
| 15 |
+
import librosa
|
| 16 |
+
import numpy as np
|
| 17 |
+
import sounddevice as sd
|
| 18 |
+
import soundfile as sf
|
| 19 |
+
import argparse
|
| 20 |
+
from utils.argutils import print_args
|
| 21 |
+
|
| 22 |
parser = argparse.ArgumentParser(
|
| 23 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
| 24 |
)
|
|
|
|
| 41 |
arg_dict = vars(args)
|
| 42 |
print_args(args, parser)
|
| 43 |
|
| 44 |
+
# Maximum of generated wavs to keep on memory
|
| 45 |
+
MAX_WAVS = 15
|
| 46 |
+
utterances = set()
|
| 47 |
+
current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
|
| 48 |
+
synthesizer = None # type: Synthesizer
|
| 49 |
+
current_wav = None
|
| 50 |
+
waves_list = []
|
| 51 |
+
waves_count = 0
|
| 52 |
+
waves_namelist = []
|
| 53 |
+
|
| 54 |
# Hide GPUs from Pytorch to force CPU processing
|
| 55 |
if arg_dict.pop("cpu"):
|
| 56 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
|
|
|
| 75 |
## Load the models one by one.
|
| 76 |
print("Preparing the encoder, the synthesizer and the vocoder...")
|
| 77 |
ensure_default_models(Path("saved_models"))
|
| 78 |
+
#encoder.load_model(args.enc_model_fpath)
|
| 79 |
+
#synthesizer = Synthesizer(args.syn_model_fpath)
|
| 80 |
+
#vocoder.load_model(args.voc_model_fpath)
|
| 81 |
|
| 82 |
def compute_embedding(in_fpath):
|
| 83 |
+
|
| 84 |
+
if not encoder.is_loaded():
|
| 85 |
+
model_fpath = args.enc_model_fpath
|
| 86 |
+
print("Loading the encoder %s... " % model_fpath)
|
| 87 |
+
start = time.time()
|
| 88 |
+
encoder.load_model(model_fpath)
|
| 89 |
+
print("Done (%dms)." % int(1000 * (time.time() - start)), "append")
|
| 90 |
+
|
| 91 |
+
|
| 92 |
## Computing the embedding
|
| 93 |
# First, we load the wav using the function that the speaker encoder provides. This is
|
| 94 |
+
|
| 95 |
+
# Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
|
| 96 |
+
# playback, so as to have a fair comparison with the generated audio
|
| 97 |
+
wav = Synthesizer.load_preprocess_wav(in_fpath)
|
| 98 |
+
|
| 99 |
# important: there is preprocessing that must be applied.
|
| 100 |
|
| 101 |
# The following two methods are equivalent:
|
| 102 |
# - Directly load from the filepath:
|
| 103 |
+
preprocessed_wav = encoder.preprocess_wav(wav)
|
| 104 |
+
|
| 105 |
# - If the wav is already loaded:
|
| 106 |
+
#original_wav, sampling_rate = librosa.load(str(in_fpath))
|
| 107 |
+
#preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)
|
| 108 |
+
|
| 109 |
+
# Compute the embedding
|
| 110 |
+
embed, partial_embeds, _ = encoder.embed_utterance(preprocessed_wav, return_partials=True)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
print("Loaded file succesfully")
|
| 114 |
|
| 115 |
# Then we derive the embedding. There are many functions and parameters that the
|
| 116 |
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
|
| 117 |
# only use this function (with its default parameters):
|
| 118 |
+
#embed = encoder.embed_utterance(preprocessed_wav)
|
| 119 |
|
| 120 |
return embed
|
| 121 |
+
def create_spectrogram(text,embed):
|
| 122 |
# If seed is specified, reset torch seed and force synthesizer reload
|
| 123 |
if args.seed is not None:
|
| 124 |
torch.manual_seed(args.seed)
|
| 125 |
synthesizer = Synthesizer(args.syn_model_fpath)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Synthesize the spectrogram
|
| 129 |
+
model_fpath = args.syn_model_fpath
|
| 130 |
+
print("Loading the synthesizer %s... " % model_fpath)
|
| 131 |
+
start = time.time()
|
| 132 |
+
synthesizer = Synthesizer(model_fpath)
|
| 133 |
+
print("Done (%dms)." % int(1000 * (time.time()- start)), "append")
|
| 134 |
+
|
| 135 |
+
|
| 136 |
# The synthesizer works in batch, so you need to put your data in a list or numpy array
|
| 137 |
texts = [text]
|
| 138 |
embeds = [embed]
|
| 139 |
# If you know what the attention layer alignments are, you can retrieve them here by
|
| 140 |
# passing return_alignments=True
|
| 141 |
specs = synthesizer.synthesize_spectrograms(texts, embeds)
|
| 142 |
+
breaks = [spec.shape[1] for spec in specs]
|
| 143 |
+
spec = np.concatenate(specs, axis=1)
|
| 144 |
+
sample_rate=synthesizer.sample_rate
|
| 145 |
+
return spec, breaks , sample_rate
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def generate_waveform(current_generated):
|
| 149 |
+
|
| 150 |
+
speaker_name, spec, breaks = current_generated
|
| 151 |
+
assert spec is not None
|
| 152 |
|
|
|
|
| 153 |
## Generating the waveform
|
| 154 |
print("Synthesizing the waveform:")
|
| 155 |
# If seed is specified, reset torch seed and reload vocoder
|
| 156 |
if args.seed is not None:
|
| 157 |
torch.manual_seed(args.seed)
|
| 158 |
vocoder.load_model(args.voc_model_fpath)
|
| 159 |
+
|
| 160 |
+
model_fpath = args.voc_model_fpath
|
| 161 |
+
# Synthesize the waveform
|
| 162 |
+
if not vocoder.is_loaded():
|
| 163 |
+
print("Loading the vocoder %s... " % model_fpath)
|
| 164 |
+
start = time.time()
|
| 165 |
+
vocoder.load_model(model_fpath)
|
| 166 |
+
print("Done (%dms)." % int(1000 * (time.time()- start)), "append")
|
| 167 |
+
|
| 168 |
+
current_vocoder_fpath= model_fpath
|
| 169 |
+
def vocoder_progress(i, seq_len, b_size, gen_rate):
|
| 170 |
+
real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000
|
| 171 |
+
line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
|
| 172 |
+
% (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
|
| 173 |
+
print(line, "overwrite")
|
| 174 |
+
|
| 175 |
+
|
| 176 |
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
|
| 177 |
# spectrogram, the more time-efficient the vocoder.
|
| 178 |
+
if current_vocoder_fpath is not None:
|
| 179 |
+
print("")
|
| 180 |
+
generated_wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress)
|
| 181 |
+
else:
|
| 182 |
+
print("Waveform generation with Griffin-Lim... ")
|
| 183 |
+
generated_wav = Synthesizer.griffin_lim(spec)
|
| 184 |
+
|
| 185 |
+
print(" Done!", "append")
|
| 186 |
+
|
| 187 |
|
| 188 |
## Post-generation
|
| 189 |
# There's a bug with sounddevice that makes the audio cut one second earlier, so we
|
| 190 |
# pad it.
|
| 191 |
+
generated_wav = np.pad(generated_wav, (0, Synthesizer.sample_rate), mode="constant")
|
| 192 |
+
|
| 193 |
+
# Add breaks
|
| 194 |
+
b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size)
|
| 195 |
+
b_starts = np.concatenate(([0], b_ends[:-1]))
|
| 196 |
+
wavs = [generated_wav[start:end] for start, end, in zip(b_starts, b_ends)]
|
| 197 |
+
breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks)
|
| 198 |
+
generated_wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
|
| 199 |
+
|
| 200 |
|
| 201 |
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
|
| 202 |
generated_wav = encoder.preprocess_wav(generated_wav)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
return generated_wav
|
| 206 |
|
| 207 |
|
| 208 |
+
def save_on_disk(generated_wav,sample_rate):
|
| 209 |
# Save it on the disk
|
| 210 |
filename = "cloned_voice.wav"
|
| 211 |
print(generated_wav.dtype)
|
|
|
|
| 215 |
#result = os.path.join(OUT, filename)
|
| 216 |
result = filename
|
| 217 |
print(" > Saving output to {}".format(result))
|
| 218 |
+
sf.write(result, generated_wav.astype(np.float32), sample_rate)
|
| 219 |
print("\nSaved output as %s\n\n" % result)
|
| 220 |
|
| 221 |
return result
|
| 222 |
+
def play_audio(generated_wav,sample_rate):
|
| 223 |
# Play the audio (non-blocking)
|
| 224 |
if not args.no_sound:
|
| 225 |
|
| 226 |
try:
|
| 227 |
sd.stop()
|
| 228 |
+
sd.play(generated_wav, sample_rate)
|
| 229 |
except sd.PortAudioError as e:
|
| 230 |
print("\nCaught exception: %s" % repr(e))
|
| 231 |
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
|
| 232 |
except:
|
| 233 |
raise
|
| 234 |
|
| 235 |
+
def clone_voice(in_fpath, text):
|
| 236 |
try:
|
| 237 |
+
speaker_name = "output"
|
| 238 |
# Compute embedding
|
| 239 |
embed=compute_embedding(in_fpath)
|
| 240 |
print("Created the embedding")
|
| 241 |
# Generating the spectrogram
|
| 242 |
+
spec, breaks, sample_rate = create_spectrogram(text,embed)
|
| 243 |
+
current_generated = (speaker_name, spec, breaks)
|
| 244 |
print("Created the mel spectrogram")
|
| 245 |
|
| 246 |
# Create waveform
|
| 247 |
+
generated_wav=generate_waveform(current_generated)
|
| 248 |
print("Created the the waveform ")
|
| 249 |
|
| 250 |
# Save it on the disk
|
| 251 |
+
save_on_disk(generated_wav,sample_rate)
|
| 252 |
|
| 253 |
#Play the audio
|
| 254 |
+
#play_audio(generated_wav,sample_rate)
|
| 255 |
|
| 256 |
return
|
| 257 |
except Exception as e:
|
|
|
|
| 296 |
in_fpath = Path(Voicetoclone)
|
| 297 |
#in_fpath= in_fpath.replace("\"", "").replace("\'", "")
|
| 298 |
|
| 299 |
+
out_path=clone_voice(in_fpath, text)
|
| 300 |
|
| 301 |
print(" > text: {}".format(text))
|
| 302 |
|
|
|
|
| 310 |
type="filepath",
|
| 311 |
source="upload",
|
| 312 |
label='Please upload a voice to clone (max. 30mb)')
|
| 313 |
+
|
| 314 |
],
|
| 315 |
outputs="audio",
|
| 316 |
|
|
|
|
| 325 |
</div>''',
|
| 326 |
|
| 327 |
examples = [
|
| 328 |
+
["I am the cloned version of Donald Trump. Well, I think what's happening to this country is unbelievably bad. We're no longer a respected country" ,"trump.mp3"]
|
| 329 |
|
| 330 |
]
|
| 331 |
|
requirements.txt
CHANGED
|
Binary files a/requirements.txt and b/requirements.txt differ
|
|
|