Nadine Rueegg
initial commit with code and data
753fd9a
raw
history blame
4.89 kB
# code from https://github.com/nkolot/GraphCMR/blob/master/utils/mesh.py
from __future__ import division
import torch
import numpy as np
import scipy.sparse
# from models import SMPL
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from graph_networks.graphcmr.graph_layers import spmm
def scipy_to_pytorch(A, U, D):
"""Convert scipy sparse matrices to pytorch sparse matrix."""
ptU = []
ptD = []
for i in range(len(U)):
u = scipy.sparse.coo_matrix(U[i])
i = torch.LongTensor(np.array([u.row, u.col]))
v = torch.FloatTensor(u.data)
ptU.append(torch.sparse.FloatTensor(i, v, u.shape))
for i in range(len(D)):
d = scipy.sparse.coo_matrix(D[i])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
return ptU, ptD
def adjmat_sparse(adjmat, nsize=1):
"""Create row-normalized sparse graph adjacency matrix."""
adjmat = scipy.sparse.csr_matrix(adjmat)
if nsize > 1:
orig_adjmat = adjmat.copy()
for _ in range(1, nsize):
adjmat = adjmat * orig_adjmat
adjmat.data = np.ones_like(adjmat.data)
for i in range(adjmat.shape[0]):
adjmat[i,i] = 1
num_neighbors = np.array(1 / adjmat.sum(axis=-1))
adjmat = adjmat.multiply(num_neighbors)
adjmat = scipy.sparse.coo_matrix(adjmat)
row = adjmat.row
col = adjmat.col
data = adjmat.data
i = torch.LongTensor(np.array([row, col]))
v = torch.from_numpy(data).float()
adjmat = torch.sparse.FloatTensor(i, v, adjmat.shape)
return adjmat
def get_graph_params(filename, nsize=1):
"""Load and process graph adjacency matrix and upsampling/downsampling matrices."""
data = np.load(filename, encoding='latin1', allow_pickle=True) # np.load(filename, encoding='latin1')
A = data['A']
U = data['U']
D = data['D']
U, D = scipy_to_pytorch(A, U, D)
A = [adjmat_sparse(a, nsize=nsize) for a in A]
return A, U, D
class Mesh(object):
"""Mesh object that is used for handling certain graph operations."""
def __init__(self, filename='data/mesh_downsampling.npz',
num_downsampling=1, nsize=1, body_model=None, device=torch.device('cuda')):
self._A, self._U, self._D = get_graph_params(filename=filename, nsize=nsize)
self._A = [a.to(device) for a in self._A]
self._U = [u.to(device) for u in self._U]
self._D = [d.to(device) for d in self._D]
self.num_downsampling = num_downsampling
# load template vertices from SMPL and normalize them
if body_model is None:
smpl = SMPL()
else:
smpl = body_model
ref_vertices = smpl.v_template
center = 0.5*(ref_vertices.max(dim=0)[0] + ref_vertices.min(dim=0)[0])[None]
ref_vertices -= center
ref_vertices /= ref_vertices.abs().max().item()
self._ref_vertices = ref_vertices.to(device)
self.faces = smpl.faces.int().to(device)
@property
def adjmat(self):
"""Return the graph adjacency matrix at the specified subsampling level."""
return self._A[self.num_downsampling].float()
@property
def ref_vertices(self):
"""Return the template vertices at the specified subsampling level."""
ref_vertices = self._ref_vertices
for i in range(self.num_downsampling):
ref_vertices = torch.spmm(self._D[i], ref_vertices)
return ref_vertices
def get_ref_vertices(self, n_downsample):
"""Return the template vertices at any desired subsampling level."""
ref_vertices = self._ref_vertices
for i in range(n_downsample):
ref_vertices = torch.spmm(self._D[i], ref_vertices)
return ref_vertices
def downsample(self, x, n1=0, n2=None):
"""Downsample mesh."""
if n2 is None:
n2 = self.num_downsampling
if x.ndimension() < 3:
for i in range(n1, n2):
x = spmm(self._D[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in range(n1, n2):
y = spmm(self._D[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x
def upsample(self, x, n1=1, n2=0):
"""Upsample mesh."""
if x.ndimension() < 3:
for i in reversed(range(n2, n1)):
x = spmm(self._U[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in reversed(range(n2, n1)):
y = spmm(self._U[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x