Spaces:
Runtime error
Runtime error
""" | |
code from https://github.com/nkolot/GraphCMR/blob/master/models/graph_layers.py | |
This file contains definitions of layers used to build the GraphCNN | |
""" | |
from __future__ import division | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
class GraphConvolution(nn.Module): | |
"""Simple GCN layer, similar to https://arxiv.org/abs/1609.02907.""" | |
def __init__(self, in_features, out_features, adjmat, bias=True): | |
super(GraphConvolution, self).__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.adjmat = adjmat | |
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features)) | |
if bias: | |
self.bias = nn.Parameter(torch.FloatTensor(out_features)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
def reset_parameters(self): | |
# stdv = 1. / math.sqrt(self.weight.size(1)) | |
stdv = 6. / math.sqrt(self.weight.size(0) + self.weight.size(1)) | |
self.weight.data.uniform_(-stdv, stdv) | |
if self.bias is not None: | |
self.bias.data.uniform_(-stdv, stdv) | |
def forward(self, x): | |
if x.ndimension() == 2: | |
support = torch.matmul(x, self.weight) | |
output = torch.matmul(self.adjmat, support) | |
if self.bias is not None: | |
output = output + self.bias | |
return output | |
else: | |
output = [] | |
for i in range(x.shape[0]): | |
support = torch.matmul(x[i], self.weight) | |
# output.append(torch.matmul(self.adjmat, support)) | |
output.append(spmm(self.adjmat, support)) | |
output = torch.stack(output, dim=0) | |
if self.bias is not None: | |
output = output + self.bias | |
return output | |
def __repr__(self): | |
return self.__class__.__name__ + ' (' \ | |
+ str(self.in_features) + ' -> ' \ | |
+ str(self.out_features) + ')' | |
class GraphLinear(nn.Module): | |
""" | |
Generalization of 1x1 convolutions on Graphs | |
""" | |
def __init__(self, in_channels, out_channels): | |
super(GraphLinear, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.W = nn.Parameter(torch.FloatTensor(out_channels, in_channels)) | |
self.b = nn.Parameter(torch.FloatTensor(out_channels)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
w_stdv = 1 / (self.in_channels * self.out_channels) | |
self.W.data.uniform_(-w_stdv, w_stdv) | |
self.b.data.uniform_(-w_stdv, w_stdv) | |
def forward(self, x): | |
return torch.matmul(self.W[None, :], x) + self.b[None, :, None] | |
class GraphResBlock(nn.Module): | |
""" | |
Graph Residual Block similar to the Bottleneck Residual Block in ResNet | |
""" | |
def __init__(self, in_channels, out_channels, A): | |
super(GraphResBlock, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.lin1 = GraphLinear(in_channels, out_channels // 2) | |
self.conv = GraphConvolution(out_channels // 2, out_channels // 2, A) | |
self.lin2 = GraphLinear(out_channels // 2, out_channels) | |
self.skip_conv = GraphLinear(in_channels, out_channels) | |
self.pre_norm = nn.GroupNorm(in_channels // 8, in_channels) | |
self.norm1 = nn.GroupNorm((out_channels // 2) // 8, (out_channels // 2)) | |
self.norm2 = nn.GroupNorm((out_channels // 2) // 8, (out_channels // 2)) | |
def forward(self, x): | |
y = F.relu(self.pre_norm(x)) | |
y = self.lin1(y) | |
y = F.relu(self.norm1(y)) | |
y = self.conv(y.transpose(1,2)).transpose(1,2) | |
y = F.relu(self.norm2(y)) | |
y = self.lin2(y) | |
if self.in_channels != self.out_channels: | |
x = self.skip_conv(x) | |
return x+y | |
class SparseMM(torch.autograd.Function): | |
"""Redefine sparse @ dense matrix multiplication to enable backpropagation. | |
The builtin matrix multiplication operation does not support backpropagation in some cases. | |
""" | |
def forward(ctx, sparse, dense): | |
ctx.req_grad = dense.requires_grad | |
ctx.save_for_backward(sparse) | |
return torch.matmul(sparse, dense) | |
def backward(ctx, grad_output): | |
grad_input = None | |
sparse, = ctx.saved_tensors | |
if ctx.req_grad: | |
grad_input = torch.matmul(sparse.t(), grad_output) | |
return None, grad_input | |
def spmm(sparse, dense): | |
return SparseMM.apply(sparse, dense) |