Nadine Rueegg
initial commit with code and data
753fd9a
import numpy as np
import random
import copy
import time
import warnings
import random
from torch.utils.data import Sampler
from torch._six import int_classes as _int_classes
class CustomGCSampler(Sampler):
"""Wraps another sampler to yield a mini-batch of indices.
The structure of this sampler is way to complicated because it is a shorter/simplified version of
CustomBatchSampler. The relations between breeds are not relevant for the cvpr 2022 paper, but we kept
this structure which we were using for the experiments with clade related losses. ToDo: restructure
this sampler.
Args:
data_sampler_info (dict): a dictionnary, containing information about the dataset and breeds.
batch_size (int): Size of mini-batch.
"""
def __init__(self, data_sampler_info_gc, batch_size, add_nonflat=False, more_standing=False):
if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \
batch_size <= 0:
assert (batch_size == 12 and add_nonflat==False) or (batch_size == 14 and add_nonflat==True)
raise ValueError("batch_size should be a positive integer value, "
"but got batch_size={}".format(batch_size))
self.data_sampler_info_gc = data_sampler_info_gc
self.batch_size = batch_size
self.add_nonflat = add_nonflat
self.more_standing = more_standing
self.n_images_tot = len(self.data_sampler_info_gc['name_list']) # 4305
# get full sorted image list
self.pose_dict = {}
self.dict_name_to_idx = {}
for ind_img, img in enumerate(self.data_sampler_info_gc['name_list']):
self.dict_name_to_idx[img] = ind_img
pose = self.data_sampler_info_gc['gc_annots_categories'][img]['pose']
if pose in self.pose_dict.keys():
self.pose_dict[pose].append(img)
else:
self.pose_dict[pose] = [img]
# prepare non-flat images
if self.add_nonflat:
self.n_images_nonflat_tot = len(self.data_sampler_info_gc['name_list_nonflat'])
# self.n_desired_batches = int(np.floor(len(self.data_sampler_info_gc['name_list']) / batch_size)) # 157
self.n_desired_batches = int(np.ceil(len(self.get_list_for_group_index(ind_g=1, n_groups=5, shuffle=True, more_standing=self.more_standing)) / 3))
def get_description(self):
description = "\
This sampler returns stanext data such that poses are more balanced. \n\
-> works on top of stanext24_withgc_v2"
return description
def get_nonflat_idx_list(self, shuffle=True):
all_nonflat_idxs = list(range(self.n_images_tot, self.n_images_tot + self.n_images_nonflat_tot))
if shuffle:
random.shuffle(all_nonflat_idxs)
return all_nonflat_idxs
def get_list_for_group_index(self, ind_g, n_groups=5, shuffle=True, return_info=False, more_standing=False):
# availabe poses
# sitting_sym: 561
# lying_sym: 199
# jumping_touching: 21
# standing_4paws: 1999
# running: 132
# sitting_comp: 306
# onhindlegs: 16
# walking: 325
# lying_comp: 596
# standing_fewpaws: 98
# otherpose: 22
# downwardfacingdog: 14
# jumping_nottouching: 16
#
# available groups (7 groups)
# 89: 'otherpose', 'downwardfacingdog', 'jumping_nottouching', 'onhindlegs', 'jumping_touching'
# 561: 'sitting_sym'
# 306: 'sitting_comp'
# 199: 'lying_sym'
# 596: 'lying_comp'
# 555: 'standing_fewpaws', 'running', 'walking'
# 1999: 'standing_4paws'
# -> sample: 2, 1.5, 1.5, 1.5, 1.5, 2, 2
#
# available groups (5 groups)
# 89: 'otherpose', 'downwardfacingdog', 'jumping_nottouching', 'onhindlegs', 'jumping_touching'
# 867: 'sitting_sym', 'sitting_comp'
# 795: 'lying_sym', 'lying_comp'
# 555: 'standing_fewpaws', 'running', 'walking'
# 1999: 'standing_4paws'
# -> sample: 2, 3, 3, 2, 2
assert (n_groups == 5)
if more_standing:
if ind_g == 0:
n_samples_per_batch = 2
pose_names = ['otherpose', 'downwardfacingdog', 'jumping_nottouching', 'onhindlegs', 'jumping_touching']
elif ind_g == 1:
n_samples_per_batch = 2
pose_names = ['sitting_sym', 'sitting_comp']
elif ind_g == 2:
n_samples_per_batch = 2
pose_names = ['lying_sym', 'lying_comp']
elif ind_g == 3:
n_samples_per_batch = 2
pose_names = ['standing_fewpaws', 'running', 'walking']
elif ind_g == 4:
n_samples_per_batch = 4
pose_names = ['standing_4paws']
else:
raise ValueError
else:
if ind_g == 0:
n_samples_per_batch = 2
pose_names = ['otherpose', 'downwardfacingdog', 'jumping_nottouching', 'onhindlegs', 'jumping_touching']
elif ind_g == 1:
n_samples_per_batch = 3
pose_names = ['sitting_sym', 'sitting_comp']
elif ind_g == 2:
n_samples_per_batch = 3
pose_names = ['lying_sym', 'lying_comp']
elif ind_g == 3:
n_samples_per_batch = 2
pose_names = ['standing_fewpaws', 'running', 'walking']
elif ind_g == 4:
n_samples_per_batch = 2
pose_names = ['standing_4paws']
else:
raise ValueError
all_imgs_this_group = []
for pose_name in pose_names:
all_imgs_this_group.extend(self.pose_dict[pose_name])
if shuffle:
random.shuffle(all_imgs_this_group)
if return_info:
return all_imgs_this_group, pose_names, n_samples_per_batch
else:
return all_imgs_this_group
def __iter__(self):
n_groups = 5
group_lists = {}
n_samples_per_batch = {}
for ind_g in range(n_groups):
group_lists[ind_g], pose_names, n_samples_per_batch[ind_g] = self.get_list_for_group_index(ind_g, n_groups=5, shuffle=True, return_info=True, more_standing=self.more_standing)
if self.add_nonflat:
nonflat_idx_list = self.get_nonflat_idx_list()
# we want to sample all sitting poses at least once per batch (and ths all other
# images except standing on 4 paws)
all_batches = []
for ind in range(self.n_desired_batches):
batch_with_idxs = []
for ind_g in range(n_groups):
for ind_s in range(n_samples_per_batch[ind_g]):
if len(group_lists[ind_g]) == 0:
group_lists[ind_g] = self.get_list_for_group_index(ind_g, n_groups=5, shuffle=True, more_standing=self.more_standing)
name = group_lists[ind_g].pop(0)
idx = self.dict_name_to_idx[name]
batch_with_idxs.append(idx)
if self.add_nonflat:
for ind_x in range(2):
if len(nonflat_idx_list) == 0:
nonflat_idx_list = self.get_nonflat_idx_list()
idx = nonflat_idx_list.pop(0)
batch_with_idxs.append(idx)
all_batches.append(batch_with_idxs)
for batch in all_batches:
yield batch
def __len__(self):
# Since we are sampling pairs of dogs and not each breed has an even number of dogs, we can not
# guarantee to show each dog exacly once. What we do instead, is returning the same amount of
# batches as we would return with a standard sampler which is not based on dog pairs.
'''if self.drop_last:
return len(self.sampler) // self.batch_size # type: ignore
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size # type: ignore'''
return self.n_desired_batches