Spaces:
Runtime error
Runtime error
File size: 26,190 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
# 24 joints instead of 20!!
import gzip
import json
import os
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage
import csv
import pickle as pkl
from csv import DictReader
from pycocotools.mask import decode as decode_RLE
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from configs.data_info import COMPLETE_DATA_INFO_24
from stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from stacked_hourglass.utils.misc import to_torch
from stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import stacked_hourglass.datasets.utils_stanext as utils_stanext
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints
from configs.dog_breeds.dog_breed_class import COMPLETE_ABBREV_DICT, COMPLETE_SUMMARY_BREEDS, SIM_MATRIX_RAW, SIM_ABBREV_INDICES
from configs.dataset_path_configs import STANEXT_RELATED_DATA_ROOT_DIR
from smal_pytorch.smal_model.smal_basics import get_symmetry_indices
def read_csv(csv_file):
with open(csv_file,'r') as f:
reader = csv.reader(f)
headers = next(reader)
row_list = [{h:x for (h,x) in zip(headers,row)} for row in reader]
return row_list
class StanExtGC(data.Dataset):
DATA_INFO = COMPLETE_DATA_INFO_24
# Suggested joints to use for keypoint reprojection error calculations
ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]
def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
scale_factor=0.25, rot_factor=30, label_type='Gaussian',
do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only', V12=None, val_opt='test'):
self.V12 = V12
self.is_train = is_train # training set or test set
if do_augment == 'yes':
self.do_augment = True
elif do_augment == 'no':
self.do_augment = False
elif do_augment=='default':
if self.is_train:
self.do_augment = True
else:
self.do_augment = False
else:
raise ValueError
self.inp_res = inp_res
self.out_res = out_res
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.dataset_mode = dataset_mode
if self.dataset_mode=='complete' or self.dataset_mode=='complete_with_gc' or self.dataset_mode=='keyp_and_seg' or self.dataset_mode=='keyp_and_seg_and_partseg':
self.calc_seg = True
else:
self.calc_seg = False
self.val_opt = val_opt
# create train/val split
self.img_folder = utils_stanext.get_img_dir(V12=self.V12)
self.train_dict, init_test_dict, init_val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
self.train_name_list = list(self.train_dict.keys()) # 7004
if self.val_opt == 'test':
self.test_dict = init_test_dict
self.test_name_list = list(self.test_dict.keys())
elif self.val_opt == 'val':
self.test_dict = init_val_dict
self.test_name_list = list(self.test_dict.keys())
else:
raise NotImplementedError
# path_gc_annots_overview = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stage3/gc_annots_overview_first699.pkl'
path_gc_annots_overview = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stage3/gc_annots_overview_stage3complete.pkl'
with open(path_gc_annots_overview, 'rb') as f:
self.gc_annots_overview = pkl.load(f)
list_gc_labelled_images = list(self.gc_annots_overview.keys())
test_name_list_gc = []
for name in self.test_name_list:
if name.split('.')[0] in list_gc_labelled_images:
test_name_list_gc.append(name)
train_name_list_gc = []
for name in self.train_name_list:
if name.split('.')[0] in list_gc_labelled_images:
train_name_list_gc.append(name)
self.test_name_list = test_name_list_gc
self.train_name_list = train_name_list_gc
random.seed(4)
random.shuffle(self.test_name_list)
'''
already_labelled = ['n02093991-Irish_terrier/n02093991_2874.jpg',
'n02093754-Border_terrier/n02093754_1062.jpg',
'n02092339-Weimaraner/n02092339_1672.jpg',
'n02096177-cairn/n02096177_4916.jpg',
'n02110185-Siberian_husky/n02110185_725.jpg',
'n02110806-basenji/n02110806_761.jpg',
'n02094433-Yorkshire_terrier/n02094433_2474.jpg',
'n02097474-Tibetan_terrier/n02097474_8796.jpg',
'n02099601-golden_retriever/n02099601_2495.jpg']
self.trainvaltest_dict = dict(self.train_dict)
for d in (init_test_dict, init_val_dict): self.trainvaltest_dict.update(d)
gc_annot_csv = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/my_gcannotations_qualification.csv'
gc_row_list = read_csv(gc_annot_csv)
json_acceptable_string = (gc_row_list[0]['vertices']).replace("'", "\"")
self.gc_dict = json.loads(json_acceptable_string)
self.train_name_list = already_labelled
self.test_name_list = already_labelled
'''
# stanext breed dict (contains for each name a stanext specific index)
breed_json_path = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'StanExt_breed_dict_v2.json')
self.breed_dict = self.get_breed_dict(breed_json_path, create_new_breed_json=False)
# load smal symmetry info
self.sym_ids_dict = get_symmetry_indices()
'''
self.train_name_list = sorted(self.train_name_list)
self.test_name_list = sorted(self.test_name_list)
random.seed(4)
random.shuffle(self.train_name_list)
random.shuffle(self.test_name_list)
if shorten_dataset_to is not None:
# sometimes it is useful to have a smaller set (validation speed, debugging)
self.train_name_list = self.train_name_list[0 : min(len(self.train_name_list), shorten_dataset_to)]
self.test_name_list = self.test_name_list[0 : min(len(self.test_name_list), shorten_dataset_to)]
# special case for debugging: 12 similar images
if shorten_dataset_to == 12:
my_sample = self.test_name_list[2]
for ind in range(0, 12):
self.test_name_list[ind] = my_sample
'''
print('len(dataset): ' + str(self.__len__()))
# add results for eyes, whithers and throat as obtained through anipose -> they are used
# as pseudo ground truth at training time.
# self.path_anipose_out_root = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'animalpose_hg8_v0_results_on_StanExt')
self.path_anipose_out_root = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'animalpose_hg8_v1_results_on_StanExt') # this is from hg_anipose_after01bugfix_v1
# self.prepare_anipose_res_and_save()
def get_data_sampler_info(self):
# for custom data sampler
if self.is_train:
name_list = self.train_name_list
else:
name_list = self.test_name_list
info_dict = {'name_list': name_list,
'stanext_breed_dict': self.breed_dict,
'breeds_abbrev_dict': COMPLETE_ABBREV_DICT,
'breeds_summary': COMPLETE_SUMMARY_BREEDS,
'breeds_sim_martix_raw': SIM_MATRIX_RAW,
'breeds_sim_abbrev_inds': SIM_ABBREV_INDICES
}
return info_dict
def get_breed_dict(self, breed_json_path, create_new_breed_json=False):
if create_new_breed_json:
breed_dict = {}
breed_index = 0
for img_name in self.train_name_list:
folder_name = img_name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
if not (folder_name in breed_dict):
breed_dict[folder_name] = {
'breed_name': breed_name,
'index': breed_index}
breed_index += 1
with open(breed_json_path, 'w', encoding='utf-8') as f: json.dump(breed_dict, f, ensure_ascii=False, indent=4)
else:
with open(breed_json_path) as json_file: breed_dict = json.load(json_file)
return breed_dict
def prepare_anipose_res_and_save(self):
# I only had to run this once ...
# path_animalpose_res_root = '/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/results/animalpose_hg8_v0/'
path_animalpose_res_root = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/results/results/hg_anipose_after01bugfix_v1/stanext24_XXX_e300_json/'
train_dict, init_test_dict, init_val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
train_name_list = list(train_dict.keys())
val_name_list = list(init_val_dict.keys())
test_name_list = list(init_test_dict.keys())
all_dicts = [train_dict, init_val_dict, init_test_dict]
all_name_lists = [train_name_list, val_name_list, test_name_list]
all_prefixes = ['train', 'val', 'test']
for ind in range(3):
this_name_list = all_name_lists[ind]
this_dict = all_dicts[ind]
this_prefix = all_prefixes[ind]
for index in range(0, len(this_name_list)):
print(index)
name = this_name_list[index]
data = this_dict[name]
img_path = os.path.join(self.img_folder, data['img_path'])
path_animalpose_res = os.path.join(path_animalpose_res_root.replace('XXX', this_prefix), data['img_path'].replace('.jpg', '.json'))
# prepare predicted keypoints
'''if is_train:
path_animalpose_res = os.path.join(path_animalpose_res_root, 'train_stanext', 'res_' + str(index) + '.json')
else:
path_animalpose_res = os.path.join(path_animalpose_res_root, 'test_stanext', 'res_' + str(index) + '.json')
'''
with open(path_animalpose_res) as f: animalpose_data = json.load(f)
anipose_joints_256 = np.asarray(animalpose_data['pred_joints_256']).reshape((-1, 3))
anipose_center = animalpose_data['center']
anipose_scale = animalpose_data['scale']
anipose_joints_64 = anipose_joints_256 / 4
'''thrs_21to24 = 0.2
anipose_joints_21to24 = np.zeros((4, 3)))
for ind_j in range(0:4):
anipose_joints_untrans = transform(anipose_joints_64[20+ind_j, 0:2], anipose_center, anipose_scale, [64, 64], invert=True, rot=0, as_int=False)-1
anipose_joints_trans_again = transform(anipose_joints_untrans+1, anipose_center, anipose_scale, [64, 64], invert=False, rot=0, as_int=False)
anipose_joints_21to24[ind_j, :2] = anipose_joints_untrans
if anipose_joints_256[20+ind_j, 2] >= thrs_21to24:
anipose_joints_21to24[ind_j, 2] = 1'''
anipose_joints_0to24 = np.zeros((24, 3))
for ind_j in range(24):
# anipose_joints_untrans = transform(anipose_joints_64[ind_j, 0:2], anipose_center, anipose_scale, [64, 64], invert=True, rot=0, as_int=False)-1
anipose_joints_untrans = transform(anipose_joints_64[ind_j, 0:2]+1, anipose_center, anipose_scale, [64, 64], invert=True, rot=0, as_int=False)-1
anipose_joints_0to24[ind_j, :2] = anipose_joints_untrans
anipose_joints_0to24[ind_j, 2] = anipose_joints_256[ind_j, 2]
# save anipose result for usage later on
out_path = os.path.join(self.path_anipose_out_root, data['img_path'].replace('.jpg', '.json'))
if not os.path.exists(os.path.dirname(out_path)): os.makedirs(os.path.dirname(out_path))
out_dict = {'orig_anipose_joints_256': list(anipose_joints_256.reshape((-1))),
'anipose_joints_0to24': list(anipose_joints_0to24[:, :3].reshape((-1))),
'orig_index': index,
'orig_scale': animalpose_data['scale'],
'orig_center': animalpose_data['center'],
'data_split': this_prefix, # 'is_train': is_train,
}
with open(out_path, 'w') as outfile: json.dump(out_dict, outfile)
return
def __getitem__(self, index):
if self.is_train:
train_val_test_Prefix = 'train'
name = self.train_name_list[index]
data = self.train_dict[name]
else:
train_val_test_Prefix = self.val_opt # 'val' or 'test'
name = self.test_name_list[index]
data = self.test_dict[name]
img_path = os.path.join(self.img_folder, data['img_path'])
'''
# for debugging only
train_val_test_Prefix = 'train'
name = self.train_name_list[index]
data = self.trainvaltest_dict[name]
img_path = os.path.join(self.img_folder, data['img_path'])
if self.dataset_mode=='complete_with_gc':
n_verts_smal = 3889
gc_info_raw = self.gc_dict['bite/' + name] # a list with all vertex numbers that are in ground contact
gc_info = []
gc_info_tch = torch.zeros((n_verts_smal))
for ind_v in gc_info_raw:
if ind_v < n_verts_smal:
gc_info.append(ind_v)
gc_info_tch[ind_v] = 1
gc_info_available = True
'''
# array of shape (n_verts_smal, 3) with [first: no-contact=0 contact=1 second: index of vertex third: dist]
gc_vertdists_overview = self.gc_annots_overview[name.split('.')[0]]['gc_vertdists_overview']
gc_info_tch = torch.tensor(gc_vertdists_overview[:, :]) # torch.tensor(gc_vertdists_overview[:, 0])
gc_info_available = True
# import pdb; pdb.set_trace()
debugging = False
if debugging:
import shutil
import trimesh
from smal_pytorch.smal_model.smal_torch_new import SMAL
smal = SMAL()
verts = smal.v_template.detach().cpu().numpy()
faces = smal.faces.detach().cpu().numpy()
vert_colors = np.repeat(255*gc_info_tch[:, 0].detach().cpu().numpy()[:, None], 3, 1)
# vert_colors = np.repeat(255*gc_info_np[:, None], 3, 1)
my_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False, maintain_order=True)
my_mesh.visual.vertex_colors = vert_colors
debug_folder = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/gc_debugging/'
my_mesh.export(debug_folder + (name.split('/')[1]).replace('.jpg', '_withgc.obj'))
shutil.copy(img_path, debug_folder + name.split('/')[1])
sf = self.scale_factor
rf = self.rot_factor
try:
# import pdb; pdb.set_trace()
'''new_anipose_root_path = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/results/results/hg_anipose_after01bugfix_v1/stanext24_XXX_e300_json/'
adjusted_new_anipose_root_path = new_anipose_root_path.replace('XXX', train_val_test_Prefix)
new_anipose_res_path = adjusted_new_anipose_root_path + data['img_path'].replace('.jpg', '.json')
with open(new_anipose_res_path) as f: new_anipose_data = json.load(f)
'''
anipose_res_path = os.path.join(self.path_anipose_out_root, data['img_path'].replace('.jpg', '.json'))
with open(anipose_res_path) as f: anipose_data = json.load(f)
anipose_thr = 0.2
anipose_joints_0to24 = np.asarray(anipose_data['anipose_joints_0to24']).reshape((-1, 3))
anipose_joints_0to24_scores = anipose_joints_0to24[:, 2]
# anipose_joints_0to24_scores[anipose_joints_0to24_scores>anipose_thr] = 1.0
anipose_joints_0to24_scores[anipose_joints_0to24_scores<anipose_thr] = 0.0
anipose_joints_0to24[:, 2] = anipose_joints_0to24_scores
except:
# REMARK: This happens sometimes!!! maybe once every 10th image..?
print('no anipose eye keypoints!')
anipose_joints_0to24 = np.zeros((24, 3))
joints = np.concatenate((np.asarray(data['joints'])[:20, :], anipose_joints_0to24[20:24, :]), axis=0)
joints[joints[:, 2]==0, :2] = 0 # avoid nan values
pts = torch.Tensor(joints)
# inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
# sf = scale * 200.0 / res[0] # res[0]=256
# center = center * 1.0 / sf
# scale = scale / sf = 256 / 200
# h = 200 * scale
bbox_xywh = data['img_bbox']
bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
bbox_max = max(bbox_xywh[2], bbox_xywh[3])
bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
# bbox_s = bbox_max / 200. # the dog will fill the image -> bbox_max = 256
# bbox_s = bbox_diag / 200. # diagonal of the boundingbox will be 200
bbox_s = bbox_max / 200. * 256. / 200. # maximum side of the bbox will be 200
c = torch.Tensor(bbox_c)
s = bbox_s
# For single-person pose estimation with a centered/scaled figure
nparts = pts.size(0)
img = load_image(img_path) # CxHxW
# segmentation map (we reshape it to 3xHxW, such that we can do the
# same transformations as with the image)
if self.calc_seg:
seg = torch.Tensor(utils_stanext.get_seg_from_entry(data)[None, :, :])
seg = torch.cat(3*[seg])
r = 0
do_flip = False
if self.do_augment:
s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
# Flip
if random.random() <= 0.5:
do_flip = True
img = fliplr(img)
if self.calc_seg:
seg = fliplr(seg)
pts = shufflelr(pts, img.size(2), self.DATA_INFO.hflip_indices)
c[0] = img.size(2) - c[0]
# flip ground contact annotations
gc_info_tch_swapped = torch.zeros_like(gc_info_tch)
gc_info_tch_swapped[self.sym_ids_dict['center'], :] = gc_info_tch[self.sym_ids_dict['center'], :]
gc_info_tch_swapped[self.sym_ids_dict['right'], :] = gc_info_tch[self.sym_ids_dict['left'], :]
gc_info_tch_swapped[self.sym_ids_dict['left'], :] = gc_info_tch[self.sym_ids_dict['right'], :]
gc_info_tch = gc_info_tch_swapped
# Color
img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
# import pdb; pdb.set_trace()
debugging = False
if debugging and do_flip:
import shutil
import trimesh
from smal_pytorch.smal_model.smal_torch_new import SMAL
smal = SMAL()
verts = smal.v_template.detach().cpu().numpy()
faces = smal.faces.detach().cpu().numpy()
vert_colors = np.repeat(255*gc_info_tch[:, 0].detach().cpu().numpy()[:, None], 3, 1)
# vert_colors = np.repeat(255*gc_info_np[:, None], 3, 1)
my_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False, maintain_order=True)
my_mesh.visual.vertex_colors = vert_colors
debug_folder = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/gc_debugging/'
my_mesh.export(debug_folder + (name.split('/')[1]).replace('.jpg', '_withgc_flip.obj'))
# Prepare image and groundtruth map
inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
img_border_mask = torch.all(inp > 1.0/256, dim = 0).unsqueeze(0).float() # 1 is foreground
inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
if self.calc_seg:
seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)
# Generate ground truth
tpts = pts.clone()
target_weight = tpts[:, 2].clone().view(nparts, 1)
target = torch.zeros(nparts, self.out_res, self.out_res)
for i in range(nparts):
# if tpts[i, 2] > 0: # This is evil!!
if tpts[i, 1] > 0:
tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False)) - 1
target[i], vis = draw_labelmap(target[i], tpts[i], self.sigma, type=self.label_type)
target_weight[i, 0] *= vis
# NEW:
'''target_new, vis_new = draw_multiple_labelmaps((self.out_res, self.out_res), tpts[:, :2]-1, self.sigma, type=self.label_type)
target_weight_new = tpts[:, 2].clone().view(nparts, 1) * vis_new
target_new[(target_weight_new==0).reshape((-1)), :, :] = 0'''
# --- Meta info
this_breed = self.breed_dict[name.split('/')[0]] # 120
# add information about location within breed similarity matrix
folder_name = name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
abbrev = COMPLETE_ABBREV_DICT[breed_name]
try:
sim_breed_index = COMPLETE_SUMMARY_BREEDS[abbrev]._ind_in_xlsx_matrix
except: # some breeds are not in the xlsx file
sim_breed_index = -1
meta = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index,
'ind_dataset': 0} # ind_dataset=0 for stanext or stanexteasy or stanext 2
meta2 = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'ind_dataset': 3}
# import pdb; pdb.set_trace()
# out_path_root = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/stanext_preprocessing/old_animalpose_version/'
# out_path_root = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/stanext_preprocessing/v0/'
# save_input_image_with_keypoints(inp, meta['tpts'], out_path = out_path_root + name.replace('/', '_'), ratio_in_out=self.inp_res/self.out_res)
# return different things depending on dataset_mode
if self.dataset_mode=='keyp_only':
# save_input_image_with_keypoints(inp, meta['tpts'], out_path='./test_input_stanext.png', ratio_in_out=self.inp_res/self.out_res)
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg':
meta['silh'] = seg[0, :, :]
meta['name'] = name
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg_and_partseg':
# partseg is fake! this does only exist such that this dataset can be combined with an other datset that has part segmentations
meta2['silh'] = seg[0, :, :]
meta2['name'] = name
fake_body_part_matrix = torch.ones((3, 256, 256)).long() * (-1)
meta2['body_part_matrix'] = fake_body_part_matrix
return inp, target, meta2
elif (self.dataset_mode=='complete') or (self.dataset_mode=='complete_with_gc'):
target_dict = meta
target_dict['silh'] = seg[0, :, :]
# NEW for silhouette loss
target_dict['img_border_mask'] = img_border_mask
target_dict['has_seg'] = True
# ground contact
if self.dataset_mode=='complete_with_gc':
target_dict['has_gc_is_touching'] = True
target_dict['has_gc'] = gc_info_available
target_dict['gc'] = gc_info_tch
if target_dict['silh'].sum() < 1:
if ((not self.is_train) and self.val_opt == 'test'):
raise ValueError
elif self.is_train:
print('had to replace training image')
replacement_index = max(0, index - 1)
inp, target_dict = self.__getitem__(replacement_index)
else:
# There seem to be a few validation images without segmentation
# which would lead to nan in iou calculation
replacement_index = max(0, index - 1)
inp, target_dict = self.__getitem__(replacement_index)
return inp, target_dict
else:
print('sampling error')
import pdb; pdb.set_trace()
raise ValueError
def __len__(self):
if self.is_train:
return len(self.train_name_list)
else:
return len(self.test_name_list)
|