Spaces:
Runtime error
Runtime error
File size: 15,431 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import glob
import csv
import numpy as np
import cv2
import math
import glob
import pickle as pkl
import open3d as o3d
import trimesh
import torch
import torch.utils.data as data
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from configs.anipose_data_info import COMPLETE_DATA_INFO
from stacked_hourglass.utils.imutils import load_image
from stacked_hourglass.utils.transforms import crop, color_normalize
from stacked_hourglass.utils.pilutil import imresize
from stacked_hourglass.utils.imutils import im_to_torch
from configs.dataset_path_configs import TEST_IMAGE_CROP_ROOT_DIR
from configs.data_info import COMPLETE_DATA_INFO_24
class SketchfabScans(data.Dataset):
DATA_INFO = COMPLETE_DATA_INFO_24
ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]
def __init__(self, img_crop_folder='default', image_path=None, is_train=False, inp_res=256, out_res=64, sigma=1,
scale_factor=0.25, rot_factor=30, label_type='Gaussian',
do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only'):
assert is_train == False
assert do_augment == 'default' or do_augment == False
self.inp_res = inp_res
self.n_pcpoints = 3000
self.folder_imgs = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'datasets', 'sketchfab_test_set', 'images')
self.folder_silh = self.folder_imgs.replace('images', 'silhouettes')
self.folder_point_clouds = self.folder_imgs.replace('images', 'point_clouds_' + str(self.n_pcpoints))
self.folder_meshes = self.folder_imgs.replace('images', 'meshes')
self.csv_keyp_annots_path = self.folder_imgs.replace('images', 'keypoint_annotations/sketchfab_joint_annotations_complete.csv')
self.pkl_keyp_annots_path = self.folder_imgs.replace('images', 'keypoint_annotations/sketchfab_joint_annotations_complete_but_as_pkl_file.pkl')
self.all_mesh_paths = glob.glob(self.folder_meshes + '/**/*.obj', recursive=True)
name_list = glob.glob(os.path.join(self.folder_imgs, '*.png')) + glob.glob(os.path.join(self.folder_imgs, '*.jpg')) + glob.glob(os.path.join(self.folder_imgs, '*.jpeg'))
name_list = sorted(name_list)
# self.test_name_list = [name.split('/')[-1] for name in name_list]
self.test_name_list = []
for name in name_list:
# if not (('13' in name) or ('dalmatian' in name and '1281' in name)):
# if not ('13' in name):
self.test_name_list.append(name.split('/')[-1])
print('len(dataset): ' + str(self.__len__()))
'''
self.test_mesh_path_list = []
for img_name in self.test_name_list:
breed = img_name.split('_')[0] # will be french instead of french_bulldog
mask = img_name.split('_')[-2]
this_mp = []
for mp in self.all_mesh_paths:
if (breed in mp) and (mask in mp):
this_mp.append(mp)
if breed in 'french_bulldog':
this_mp_old = this_mp.copy()
this_mp = []
for mp in this_mp_old:
if ('_' + mask + '.') in mp:
this_mp.append(mp)
if not len(this_mp) == 1:
print(breed)
print(mask)
this_mp[0].index(mask)
import pdb; pdb.set_trace()
else:
self.test_mesh_path_list.append(this_mp[0])
all_pc_paths = []
for index in range(len(self.test_name_list)):
img_name = self.test_name_list[index]
dog_name = img_name.split('_' + img_name.split('_')[-1])[0]
breed = img_name.split('_')[0] # will be french instead of french_bulldog
mask = img_name.split('_')[-2]
path_pc = self.folder_point_clouds + '/' + dog_name + '.ply'
if not path_pc in all_pc_paths:
try:
print(path_pc)
mesh_path = self.test_mesh_path_list[index]
mesh_gt = o3d.io.read_triangle_mesh(mesh_path)
n_points = 3000 # 20000
pointcloud = mesh_gt.sample_points_uniformly(number_of_points=n_points)
o3d.io.write_point_cloud(path_pc, pointcloud, write_ascii=False, compressed=False, print_progress=False)
all_pc_paths.append(path_pc)
except:
print(path_pc)
'''
# import pdb; pdb.set_trace()
self.test_mesh_path_list = []
self.all_pc_paths = []
for index in range(len(self.test_name_list)):
img_name = self.test_name_list[index]
dog_name = img_name.split('_' + img_name.split('_')[-1])[0]
breed = img_name.split('_')[0] # will be french instead of french_bulldog
mask = img_name.split('_')[-2]
mesh_path = self.folder_meshes + '/' + dog_name + '.obj'
path_pc = self.folder_point_clouds + '/' + dog_name + '.ply'
if dog_name in ['dalmatian_1281', 'french_bulldog_13']:
# mesh_path_for_pc = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/datasets/sketchfab_test_set/meshes_old/dalmatian/1281/Renderbot-animal-obj-1281.obj'
mesh_path_for_pc = self.folder_meshes + '/' + dog_name + '_simple.obj'
else:
mesh_path_for_pc = mesh_path
self.test_mesh_path_list.append(mesh_path)
# if not path_pc in self.all_pc_paths:
if os.path.isfile(path_pc):
self.all_pc_paths.append(path_pc)
else:
try:
mesh_gt = o3d.io.read_triangle_mesh(mesh_path_for_pc)
except:
import pdb; pdb.set_trace()
mesh = trimesh.load(mesh_path_for_pc, process=False, maintain_order=True)
vertices = mesh.vertices
faces = mesh.faces
print(mesh_path_for_pc)
pointcloud = mesh_gt.sample_points_uniformly(number_of_points=self.n_pcpoints)
o3d.io.write_point_cloud(path_pc, pointcloud, write_ascii=False, compressed=False, print_progress=False)
self.all_pc_paths.append(path_pc)
# except:
# print(path_pc)
# add keypoint annotations (mesh vertices)
read_annots_from_csv = False # True
if read_annots_from_csv:
self.all_keypoint_annotations, self.keypoint_name_dict = self._read_keypoint_csv(self.csv_keyp_annots_path, folder_meshes=self.folder_meshes, get_keyp_coords=True)
with open(self.pkl_keyp_annots_path, 'wb') as handle:
pkl.dump(self.all_keypoint_annotations, handle, protocol=pkl.HIGHEST_PROTOCOL)
else:
with open(self.pkl_keyp_annots_path, 'rb') as handle:
self.all_keypoint_annotations = pkl.load(handle)
def _read_keypoint_csv(self, csv_path, folder_meshes=None, get_keyp_coords=True, visualize=False):
with open(csv_path,'r') as f:
reader = csv.reader(f)
headers = next(reader)
row_list = [{h:x for (h,x) in zip(headers,row)} for row in reader]
assert(headers[2] == 'hiwi')
keypoint_names = headers[3:]
center_keypoint_names = ['nose','tail_start','tail_end']
right_keypoint_names = ['right_front_paw','right_front_elbow','right_back_paw','right_back_hock','right_ear_top','right_ear_bottom','right_eye']
left_keypoint_names = ['left_front_paw','left_front_elbow','left_back_paw','left_back_hock','left_ear_top','left_ear_bottom','left_eye']
keypoint_name_dict = {'all': keypoint_names, 'left': left_keypoint_names, 'right': right_keypoint_names, 'center': center_keypoint_names}
# prepare output dicts
all_keypoint_annotations = {}
for ind in range(len(row_list)):
name = row_list[ind]['mesh_name']
this_dict = row_list[ind]
del this_dict['hiwi']
all_keypoint_annotations[name] = this_dict
keypoint_idxs = np.zeros((len(keypoint_names), 2))
if get_keyp_coords:
mesh_path = folder_meshes + '/' + row_list[ind]['mesh_name']
mesh = trimesh.load(mesh_path, process=False, maintain_order=True)
vertices = mesh.vertices
keypoint_3d_locations = np.zeros((len(keypoint_names), 4)) # 1, 2, 3: coords, 4: is_valid
for ind_kp, name_kp in enumerate(keypoint_names):
idx = this_dict[name_kp]
if idx in ['', 'n/a']:
keypoint_idxs[ind_kp, 0] = -1
else:
keypoint_idxs[ind_kp, 0] = this_dict[name_kp]
keypoint_idxs[ind_kp, 1] = 1 # is valid
if get_keyp_coords:
keyp = vertices[int(row_list[ind][name_kp])]
keypoint_3d_locations[ind_kp, :3] = keyp
keypoint_3d_locations[ind_kp, 3] = 1
all_keypoint_annotations[name]['all_keypoint_vertex_idxs'] = keypoint_idxs
if get_keyp_coords:
all_keypoint_annotations[name]['all_keypoint_coords_and_isvalid'] = keypoint_3d_locations
# create visualizations if desired
if visualize:
raise NotImplementedError # only debug path is missing
out_path = '.... some debug path'
red_color = np.asarray([255, 0, 0], dtype=np.uint8)
green_color = np.asarray([0, 255, 0], dtype=np.uint8)
blue_color = np.asarray([0, 0, 255], dtype=np.uint8)
for ind in range(len(row_list)):
mesh_path = folder_meshes + '/' + row_list[ind]['mesh_name']
mesh = trimesh.load(mesh_path, process=False, maintain_order=True) # maintain_order is very important!!!!!
vertices = mesh.vertices
faces = mesh.faces
dog_mesh_nocolor = trimesh.Trimesh(vertices=vertices, faces=faces, process=False, maintain_order=True)
dog_mesh_nocolor.visual.vertex_colors = np.ones_like(vertices, dtype=np.uint8) * 255
sphere_list = [dog_mesh_nocolor]
for keyp_name in keypoint_names:
if not (row_list[ind][keyp_name] == '' or row_list[ind][keyp_name] == 'n/a'):
keyp = vertices[int(row_list[ind][keyp_name])]
sphere = trimesh.primitives.Sphere(radius=0.02, center=keyp)
if keyp_name in right_keypoint_names:
colors = np.ones_like(sphere.vertices) * red_color[None, :]
elif keyp_name in left_keypoint_names:
colors = np.ones_like(sphere.vertices) * blue_color[None, :]
else:
colors = np.ones_like(sphere.vertices) * green_color[None, :]
sphere.visual.vertex_colors = colors # trimesh.visual.random_color()
sphere_list.append(sphere)
scene_keyp = trimesh.Scene(sphere_list)
scene_keyp.export(out_path + os.path.basename(mesh_path).replace('.obj', '_withkeyp.obj'))
return all_keypoint_annotations, keypoint_name_dict
def __getitem__(self, index):
img_name = self.test_name_list[index]
dog_name = img_name.split('_' + img_name.split('_')[-1])[0]
breed = img_name.split('_')[0] # will be french instead of french_bulldog
mask = img_name.split('_')[-2]
mesh_path = self.test_mesh_path_list[index]
# mesh_gt = o3d.io.read_triangle_mesh(mesh_path)
path_pc = self.folder_point_clouds + '/' + dog_name + '.ply'
assert path_pc in self.all_pc_paths
pc_trimesh = trimesh.load(path_pc, process=False, maintain_order=True)
pc_points = np.asarray(pc_trimesh.vertices)
assert pc_points.shape[0] == self.n_pcpoints
# get annotated 3d keypoints
keyp_3d = self.all_keypoint_annotations[mesh_path.split('/')[-1]]['all_keypoint_coords_and_isvalid']
# load image
img_path = os.path.join(self.folder_imgs, img_name)
img = load_image(img_path) # CxHxW
# try on silhouette images!
# seg_path = os.path.join(self.folder_silh, img_name)
# img = load_image(seg_path) # CxHxW
img_vis = np.transpose(img, (1, 2, 0))
seg_path = os.path.join(self.folder_silh, img_name)
seg = cv2.imread(seg_path, cv2.IMREAD_UNCHANGED)[:, :, 3]
seg[seg>0] = 1
seg_s0 = np.nonzero(seg.sum(axis=1)>0)[0]
seg_s1 = np.nonzero(seg.sum(axis=0)>0)[0]
bbox_xywh = [seg_s1.min(), seg_s0.min(), seg_s1.max() - seg_s1.min(), seg_s0.max() - seg_s0.min()]
bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
bbox_max = max(bbox_xywh[2], bbox_xywh[3])
bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
# bbox_s = bbox_max / 200. # the dog will fill the image -> bbox_max = 256
# bbox_s = bbox_diag / 200. # diagonal of the boundingbox will be 200
bbox_s = bbox_max / 200. * 256. / 200. # maximum side of the bbox will be 200
c = torch.Tensor(bbox_c)
s = bbox_s
r = 0
# Prepare image and groundtruth map
inp_col = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
inp = color_normalize(inp_col, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
silh_3channels = np.stack((seg, seg, seg), axis=0)
inp_silh = crop(silh_3channels, c, s, [self.inp_res, self.inp_res], rot=r)
'''
# prepare image (cropping and color)
img_max = max(img.shape[1], img.shape[2])
img_padded = torch.zeros((img.shape[0], img_max, img_max))
if img_max == img.shape[2]:
start = (img_max-img.shape[1])//2
img_padded[:, start:start+img.shape[1], :] = img
else:
start = (img_max-img.shape[2])//2
img_padded[:, :, start:start+img.shape[2]] = img
img = img_padded
img_prep = im_to_torch(imresize(img, [self.inp_res, self.inp_res], interp='bilinear'))
inp = color_normalize(img_prep, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
'''
# add the following fields to make it compatible with stanext, most of them are fake
target_dict = {'index': index, 'center' : -2, 'scale' : -2,
'breed_index': -2, 'sim_breed_index': -2,
'ind_dataset': 1}
target_dict['pts'] = np.zeros((self.DATA_INFO.n_keyp, 3))
target_dict['tpts'] = np.zeros((self.DATA_INFO.n_keyp, 3))
target_dict['target_weight'] = np.zeros((self.DATA_INFO.n_keyp, 1))
target_dict['silh'] = inp_silh[0, :, :] # np.zeros((self.inp_res, self.inp_res))
target_dict['mesh_path'] = mesh_path
target_dict['pointcloud_path'] = path_pc
target_dict['pointcloud_points'] = pc_points
target_dict['keypoints_3d'] = keyp_3d
return inp, target_dict
def __len__(self):
return len(self.test_name_list)
|