Spaces:
Runtime error
Runtime error
File size: 16,853 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# 24 joints instead of 20!!
import gzip
import json
import os
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage
from csv import DictReader
from pycocotools.mask import decode as decode_RLE
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', '..'))
# import stacked_hourglass.res
# from stacked_hourglass.datasets.common import DataInfo
# from configs.data_info import COMPLETE_DATA_INFO
# from configs.anipose_data_info import COMPLETE_DATA_INFO_24
from src.configs.data_info import COMPLETE_DATA_INFO_24
from src.stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from src.stacked_hourglass.utils.misc import to_torch
from src.stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import src.stacked_hourglass.datasets.utils_stanext as utils_stanext
from src.stacked_hourglass.utils.visualization import save_input_image_with_keypoints
class DogsVOC(data.Dataset):
DATA_INFO = COMPLETE_DATA_INFO_24
# Suggested joints to use for average PCK calculations.
ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16] # don't know ...
def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
scale_factor=0.25, rot_factor=30, label_type='Gaussian',
do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only', V12=None):
# self.img_folder_mpii = image_path # root image folders
self.V12 = V12
self.is_train = is_train # training set or test set
if do_augment == 'yes':
self.do_augment = True
elif do_augment == 'no':
self.do_augment = False
elif do_augment=='default':
if self.is_train:
self.do_augment = True
else:
self.do_augment = False
else:
raise ValueError
self.inp_res = inp_res
self.out_res = out_res
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.dataset_mode = dataset_mode
if self.dataset_mode=='complete' or self.dataset_mode=='keyp_and_seg' or self.dataset_mode=='keyp_and_seg_and_partseg':
self.calc_seg = True
else:
self.calc_seg = False
# create train/val split
# REMARK: I assume we should have a different train / test split here
self.img_folder = utils_stanext.get_img_dir(V12=self.V12)
self.train_dict, self.test_dict, self.val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
self.train_name_list = list(self.train_dict.keys()) # 7004
self.test_name_list = list(self.test_dict.keys()) # 5031
# breed json_path
breed_json_path = '/ps/scratch/nrueegg/new_projects/Animals/data/dog_datasets/Stanford_Dogs_Dataset/StanfordExtra/StanExt_breed_dict_v2.json'
# only use images that show fully visible dogs in standing or walking poses
'''path_easy_images_list = '/ps/scratch/nrueegg/new_projects/Animals/data/dog_datasets/Stanford_Dogs_Dataset/StanfordExtra/AMT_StanExt_easy_images.txt'
easy_images_list = [line.rstrip('\n') for line in open(path_easy_images_list)]
self.train_name_list = sorted(list(set(easy_images_list) & set(self.train_name_list)))
self.test_name_list = sorted(list(set(easy_images_list) & set(self.test_name_list)))'''
self.train_name_list = sorted(self.train_name_list)
self.test_name_list = sorted(self.test_name_list)
random.seed(4)
random.shuffle(self.train_name_list)
random.shuffle(self.test_name_list)
if shorten_dataset_to is not None:
self.train_name_list = self.train_name_list[0 : min(len(self.train_name_list), shorten_dataset_to)]
self.test_name_list = self.test_name_list[0 : min(len(self.test_name_list), shorten_dataset_to)]
if shorten_dataset_to == 12:
# my_sample = self.test_name_list[2] # black haired dog
my_sample = self.test_name_list[2]
for ind in range(0, 12):
self.test_name_list[ind] = my_sample
# add results for eyes, whithers and throat as obtained through anipose
self.path_anipose_out_root = '/ps/scratch/nrueegg/new_projects/Animals/data/dog_datasets/Stanford_Dogs_Dataset/StanfordExtra/animalpose_hg8_v0_results_on_StanExt/'
###############################################
self.dogvoc_path_root = '/ps/scratch/nrueegg/new_projects/Animals/data/pascal_voc_parts/'
self.dogvoc_path_images = self.dogvoc_path_root + 'dog_images/'
self.dogvoc_path_masks = self.dogvoc_path_root + 'dog_masks/'
with open(self.dogvoc_path_masks + 'voc_dogs_bodypart_info.json', 'r') as file:
self.body_part_info = json.load(file)
with open(self.dogvoc_path_masks + 'voc_dogs_train.json', 'r') as file:
train_set_init = json.load(file) # 707
with open(self.dogvoc_path_masks + 'voc_dogs_val.json', 'r') as file:
val_set_init = json.load(file) # 709
self.train_set = train_set_init + val_set_init[:-36]
self.val_set = val_set_init[-36:]
print('len(dataset): ' + str(self.__len__()))
# print(self.test_name_list[0:10])
def get_body_part_indices(self):
silh = [
('background', [0]),
('foreground', [255, 21, 57, 30, 59, 34, 48, 50, 79, 49, 61, 60, 54, 53, 36, 35, 27, 26, 78])]
full_body = [
('other', [255]),
('head', [21, 57, 30, 59, 34, 48, 50]),
('torso', [79, 49]),
('right front leg', [61, 60]),
('right back leg', [54, 53]),
('left front leg', [36, 35]),
('left back leg', [27, 26]),
('tail', [78])]
head = [
('other', [21, 59, 34]),
('right ear', [57]),
('left ear', [30]),
('muzzle', [48]),
('nose', [50])]
torso = [
('other', [79]), # wrong 34
('neck', [49])]
all_parts = {
'silh': silh,
'full_body': full_body,
'head': head,
'torso': torso}
return all_parts
def __getitem__(self, index):
if self.is_train:
name = self.train_name_list[index]
data = self.train_dict[name]
# data = utils_stanext.get_dog(self.train_dict, name)
else:
name = self.test_name_list[index]
data = self.test_dict[name]
# data = utils_stanext.get_dog(self.test_dict, name)
# self.do_augment = False
# index = 5 ##########################
if self.is_train:
img_info = self.train_set[index]
else:
img_info = self.val_set[index]
sf = self.scale_factor
rf = self.rot_factor
img_path = os.path.join(self.dogvoc_path_images, img_info['img_name'])
# bbox_yxhw = img_info['bbox']
# bbox_xywh = [bbox_yxhw[1], bbox_yxhw[0], bbox_yxhw[2], bbox_yxhw[3]]
bbox_xywh = img_info['bbox']
bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
bbox_max = max(bbox_xywh[2], bbox_xywh[3])
bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
# bbox_s = bbox_max / 200. # the dog will fill the image -> bbox_max = 256
# bbox_s = bbox_diag / 200. # diagonal of the boundingbox will be 200
bbox_s = bbox_max / 200. * 256. / 200. # maximum side of the bbox will be 200
c = torch.Tensor(bbox_c)
s = bbox_s
# For single-person pose estimation with a centered/scaled figure
img = load_image(img_path) # CxHxW
# img_test = img[0, img_info['bbox'][1]:img_info['bbox'][1]+img_info['bbox'][3], img_info['bbox'][0]:img_info['bbox'][0]+img_info['bbox'][2]]
# import cv2
# cv2.imwrite('/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/yy.png', np.asarray(img_test*255, np.uint8))
# segmentation map (we reshape it to 3xHxW, such that we can do the
# same transformations as with the image)
if self.do_augment and (random.random() <= 0.5):
do_flip = True
else:
do_flip = False
if self.calc_seg:
mask = np.load(os.path.join(self.dogvoc_path_masks, img_info['img_name'].split('.')[0] + '_' + str(img_info['ind_bbox']) + '.npz.npy'))
seg_np = mask.copy()
seg_np[mask==0] = 0
seg_np[mask>0] = 1
seg = torch.Tensor(seg_np[None, :, :])
seg = torch.cat(3*[seg])
# NEW: body parts
all_parts = self.get_body_part_indices()
body_part_index_list = []
body_part_name_list = []
n_tbp = 3
n_bp = 15
# body_part_matrix_multiple_hot = np.zeros((n_bp, mask.shape[0], mask.shape[1]))
body_part_matrix_np = np.ones((n_tbp, mask.shape[0], mask.shape[1])) * (-1)
ind_bp = 0
for ind_tbp, part in enumerate(['full_body', 'head', 'torso']):
# import pdb; pdb.set_trace()
if part == 'full_body':
inds_mirr = [0, 1, 2, 5, 6, 3, 4, 7]
elif part == 'head':
inds_mirr = [0, 2, 1, 3, 4]
else:
inds_mirr = [0, 1]
for ind_sbp, subpart in enumerate(all_parts[part]):
if do_flip:
ind_sbp_corr = inds_mirr[ind_sbp] # we use this if the image is mirrored later on
else:
ind_sbp_corr = ind_sbp
bp_name = subpart[0]
bp_indices = subpart[1]
body_part_index_list.append(bp_indices)
body_part_name_list.append(bp_name)
# create matrix slice
xx = [mask==ind for ind in bp_indices]
xx_mat = (np.stack(xx).sum(axis=0))
# body_part_matrix_multiple_hot[ind_bp, :, :] = xx_mat
# add to matrix
body_part_matrix_np[ind_tbp, xx_mat>0] = ind_sbp_corr
ind_bp += 1
body_part_weight_masks_np = np.zeros((n_tbp, mask.shape[0], mask.shape[1]))
body_part_weight_masks_np[0, mask>0] = 1 # full body
body_part_weight_masks_np[1, body_part_matrix_np[0, :, :]==1] = 1 # head
body_part_weight_masks_np[2, body_part_matrix_np[0, :, :]==2] = 1 # torso
body_part_matrix_np[body_part_weight_masks_np==0] = 16
body_part_matrix = torch.Tensor(body_part_matrix_np + 2.0) # / 100
# import pdb; pdb.set_trace()
bbox_c_int0 = [int(bbox_c[0]), int(bbox_c[1])]
bbox_c_int1 = [int(bbox_c[0])+10, int(bbox_c[1])+10]
'''bpm_c0 = body_part_matrix[:, bbox_c_int0[1], bbox_c_int0[0]].clone()
bpm_c1 = body_part_matrix[:, bbox_c_int1[1], bbox_c_int1[0]].clone()
zero_replacement = torch.Tensor([0, 0, 0.99])
body_part_matrix[:, bbox_c_int0[1], bbox_c_int0[0]] = zero_replacement
body_part_matrix[:, bbox_c_int1[1], bbox_c_int1[0]] = 1'''
ii = 3
bpm_c0 = body_part_matrix[2, bbox_c_int0[1]-ii:bbox_c_int0[1]+ii, bbox_c_int0[0]-ii:bbox_c_int0[0]+ii]
bpm_c1 = body_part_matrix[2, bbox_c_int1[1]-ii:bbox_c_int1[1]+ii, bbox_c_int1[0]-ii:bbox_c_int1[0]+ii]
body_part_matrix[2, bbox_c_int0[1]-ii:bbox_c_int0[1]+ii, bbox_c_int0[0]-ii:bbox_c_int0[0]+ii] = 0
body_part_matrix[2, bbox_c_int1[1]-ii:bbox_c_int1[1]+ii, bbox_c_int1[0]-ii:bbox_c_int1[0]+ii] = 255
body_part_matrix = (body_part_matrix).long()
# body_part_name_list
# ['other', 'head', 'torso', 'right front leg', 'right back leg', 'left front leg', 'left back leg', 'tail', 'other', 'right ear', 'left ear', 'muzzle', 'nose', 'other', 'neck']
# swap indices:
# bp_mirroring_inds = [0, 1, 2, 5, 6, 3, 4, 7, 8, 10, 9, 11, 12, 13, 14]
r = 0
# self.is_train = False
if self.do_augment:
s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
# Flip
if do_flip:
img = fliplr(img)
if self.calc_seg:
seg = fliplr(seg)
body_part_matrix = fliplr(body_part_matrix)
c[0] = img.size(2) - c[0]
# Color
img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
# Prepare image and groundtruth map
inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
# import pdb; pdb.set_trace()
if self.calc_seg:
seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)
# 'crop' will divide by 255 and perform zero padding (
# -> weird function that tries to rescale! Because of that I add zeros and ones in the beginning
xx = body_part_matrix.clone()
# import pdb; pdb.set_trace()
body_part_matrix = crop(body_part_matrix, c, s, [self.inp_res, self.inp_res], rot=r, interp='nearest')
body_part_matrix = body_part_matrix*255 - 2
body_part_matrix[body_part_matrix == -2] = -1
body_part_matrix[body_part_matrix == 16] = -1
body_part_matrix[body_part_matrix == 253] = -1
'''print(np.unique(body_part_matrix.numpy()))
print(np.unique(body_part_matrix[0, :, :].numpy()))
print(np.unique(body_part_matrix[1, :, :].numpy()))
print(np.unique(body_part_matrix[2, :, :].numpy()))'''
# import cv2
# cv2.imwrite('/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/yy2.png', np.asarray((inp[0, :, :]+1)*100, np.uint8))
# cv2.imwrite('/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/yy3.png', (40*(1+body_part_matrix[0, :, :].numpy())).astype(np.uint8))
# Generate ground truth
nparts = 24
target_weight = torch.zeros(nparts, 1)
target = torch.zeros(nparts, self.out_res, self.out_res)
pts = torch.zeros((nparts, 3))
tpts = torch.zeros((nparts, 3))
# import pdb; pdb.set_trace()
# meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : [self.out_res, self.out_res], 'name' : name,
# 'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}
# meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : self.out_res,
# 'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}
# meta = {'index' : index, 'center' : c, 'scale' : s,
# 'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
# 'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index,
# 'ind_dataset': 0} # ind_dataset: 0 for stanext or stanexteasy or stanext 24
meta = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'ind_dataset': 3}
#import pdb; pdb.set_trace()
if self.dataset_mode=='keyp_and_seg_and_partseg':
# meta = {}
meta['silh'] = seg[0, :, :]
meta['name'] = name
meta['body_part_matrix'] = body_part_matrix.long()
# meta['body_part_weights'] = body_part_weight_masks
# import pdb; pdb.set_trace()
return inp, target, meta
else:
raise ValueError
def __len__(self):
if self.is_train:
return len(self.train_set) # len(self.train_list)
else:
return len(self.val_set) # len(self.valid_list)
|