File size: 16,853 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# 24 joints instead of 20!!


import gzip
import json
import os
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage

from csv import DictReader
from pycocotools.mask import decode as decode_RLE

import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', '..'))
# import stacked_hourglass.res
# from stacked_hourglass.datasets.common import DataInfo
# from configs.data_info import COMPLETE_DATA_INFO
# from configs.anipose_data_info import COMPLETE_DATA_INFO_24
from src.configs.data_info import COMPLETE_DATA_INFO_24
from src.stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from src.stacked_hourglass.utils.misc import to_torch
from src.stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import src.stacked_hourglass.datasets.utils_stanext as utils_stanext 
from src.stacked_hourglass.utils.visualization import save_input_image_with_keypoints



class DogsVOC(data.Dataset):
    DATA_INFO = COMPLETE_DATA_INFO_24

    # Suggested joints to use for average PCK calculations.
    ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]      # don't know ...

    def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
                 scale_factor=0.25, rot_factor=30, label_type='Gaussian', 
                 do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only', V12=None):
        # self.img_folder_mpii = image_path # root image folders
        self.V12 = V12
        self.is_train = is_train # training set or test set
        if do_augment == 'yes':
            self.do_augment = True
        elif do_augment == 'no':
            self.do_augment = False
        elif do_augment=='default':
            if self.is_train:
                self.do_augment = True
            else:
                self.do_augment = False
        else:
            raise ValueError
        self.inp_res = inp_res
        self.out_res = out_res
        self.sigma = sigma
        self.scale_factor = scale_factor
        self.rot_factor = rot_factor
        self.label_type = label_type
        self.dataset_mode = dataset_mode
        if self.dataset_mode=='complete' or self.dataset_mode=='keyp_and_seg' or self.dataset_mode=='keyp_and_seg_and_partseg':
            self.calc_seg = True
        else:
            self.calc_seg = False

        # create train/val split
        # REMARK: I assume we should have a different train / test split here
        self.img_folder = utils_stanext.get_img_dir(V12=self.V12)
        self.train_dict, self.test_dict, self.val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
        self.train_name_list = list(self.train_dict.keys())     # 7004
        self.test_name_list = list(self.test_dict.keys())       # 5031

        # breed json_path
        breed_json_path = '/ps/scratch/nrueegg/new_projects/Animals/data/dog_datasets/Stanford_Dogs_Dataset/StanfordExtra/StanExt_breed_dict_v2.json'

        # only use images that show fully visible dogs in standing or walking poses
        '''path_easy_images_list = '/ps/scratch/nrueegg/new_projects/Animals/data/dog_datasets/Stanford_Dogs_Dataset/StanfordExtra/AMT_StanExt_easy_images.txt'
        easy_images_list = [line.rstrip('\n') for line in open(path_easy_images_list)]
        self.train_name_list = sorted(list(set(easy_images_list) & set(self.train_name_list)))
        self.test_name_list = sorted(list(set(easy_images_list) & set(self.test_name_list)))'''
        self.train_name_list = sorted(self.train_name_list)
        self.test_name_list = sorted(self.test_name_list)

        random.seed(4)
        random.shuffle(self.train_name_list)
        random.shuffle(self.test_name_list)


        if shorten_dataset_to is not None:
            self.train_name_list = self.train_name_list[0 : min(len(self.train_name_list), shorten_dataset_to)]
            self.test_name_list = self.test_name_list[0 : min(len(self.test_name_list), shorten_dataset_to)]

            if shorten_dataset_to == 12:
                # my_sample = self.test_name_list[2]        # black haired dog
                my_sample = self.test_name_list[2]
                for ind in range(0, 12):
                    self.test_name_list[ind] = my_sample

        # add results for eyes, whithers and throat as obtained through anipose
        self.path_anipose_out_root = '/ps/scratch/nrueegg/new_projects/Animals/data/dog_datasets/Stanford_Dogs_Dataset/StanfordExtra/animalpose_hg8_v0_results_on_StanExt/'


        ###############################################

        self.dogvoc_path_root = '/ps/scratch/nrueegg/new_projects/Animals/data/pascal_voc_parts/'
        self.dogvoc_path_images = self.dogvoc_path_root + 'dog_images/' 
        self.dogvoc_path_masks = self.dogvoc_path_root + 'dog_masks/'

        with open(self.dogvoc_path_masks + 'voc_dogs_bodypart_info.json', 'r') as file:
            self.body_part_info = json.load(file)
        with open(self.dogvoc_path_masks + 'voc_dogs_train.json', 'r') as file:
            train_set_init = json.load(file)   # 707
        with open(self.dogvoc_path_masks + 'voc_dogs_val.json', 'r') as file:
            val_set_init = json.load(file)     # 709
        self.train_set = train_set_init + val_set_init[:-36]
        self.val_set = val_set_init[-36:]

        print('len(dataset): ' + str(self.__len__()))
        # print(self.test_name_list[0:10])

    def get_body_part_indices(self):
        silh = [
            ('background', [0]),
            ('foreground', [255, 21, 57, 30, 59, 34, 48, 50, 79, 49, 61, 60, 54, 53, 36, 35, 27, 26, 78])]
        full_body = [
            ('other', [255]),
            ('head', [21, 57, 30, 59, 34, 48, 50]),
            ('torso', [79, 49]),
            ('right front leg', [61, 60]),
            ('right back leg', [54, 53]),
            ('left front leg', [36, 35]),
            ('left back leg', [27, 26]),
            ('tail', [78])]
        head = [
            ('other', [21, 59, 34]),
            ('right ear', [57]),
            ('left ear', [30]),
            ('muzzle', [48]),
            ('nose', [50])]
        torso = [
            ('other', [79]),    # wrong 34
            ('neck', [49])]
        all_parts = {
            'silh': silh,
            'full_body': full_body,
            'head': head,
            'torso': torso}
        return all_parts





    def __getitem__(self, index):

        if self.is_train:
            name = self.train_name_list[index]
            data = self.train_dict[name]
            # data = utils_stanext.get_dog(self.train_dict, name)
        else:
            name = self.test_name_list[index]
            data = self.test_dict[name]
            # data = utils_stanext.get_dog(self.test_dict, name)

        # self.do_augment = False

        # index = 5       ##########################
        if self.is_train:
            img_info = self.train_set[index]
        else:
            img_info = self.val_set[index]

        sf = self.scale_factor
        rf = self.rot_factor

        img_path = os.path.join(self.dogvoc_path_images, img_info['img_name'])

        # bbox_yxhw = img_info['bbox']
        # bbox_xywh = [bbox_yxhw[1], bbox_yxhw[0], bbox_yxhw[2], bbox_yxhw[3]]
        bbox_xywh = img_info['bbox']
        bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
        bbox_max = max(bbox_xywh[2], bbox_xywh[3])
        bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
        # bbox_s = bbox_max / 200.      # the dog will fill the image -> bbox_max = 256
        # bbox_s = bbox_diag / 200.     # diagonal of the boundingbox will be 200
        bbox_s = bbox_max / 200. * 256. / 200.  # maximum side of the bbox will be 200
        c = torch.Tensor(bbox_c)
        s = bbox_s

        # For single-person pose estimation with a centered/scaled figure
        img = load_image(img_path)  # CxHxW

        # img_test = img[0, img_info['bbox'][1]:img_info['bbox'][1]+img_info['bbox'][3], img_info['bbox'][0]:img_info['bbox'][0]+img_info['bbox'][2]]
        # import cv2
        # cv2.imwrite('/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/yy.png', np.asarray(img_test*255, np.uint8))


        # segmentation map (we reshape it to 3xHxW, such that we can do the 
        #   same transformations as with the image)
        if self.do_augment and (random.random() <= 0.5):
            do_flip = True
        else:
            do_flip = False

        if self.calc_seg:
            mask = np.load(os.path.join(self.dogvoc_path_masks, img_info['img_name'].split('.')[0] + '_' + str(img_info['ind_bbox']) + '.npz.npy'))    
            seg_np = mask.copy()
            seg_np[mask==0] = 0
            seg_np[mask>0] = 1
            seg = torch.Tensor(seg_np[None, :, :])
            seg = torch.cat(3*[seg])

            # NEW: body parts
            all_parts = self.get_body_part_indices()
            body_part_index_list = []
            body_part_name_list = []
            n_tbp = 3
            n_bp = 15
            # body_part_matrix_multiple_hot = np.zeros((n_bp, mask.shape[0], mask.shape[1]))
            body_part_matrix_np = np.ones((n_tbp, mask.shape[0], mask.shape[1])) * (-1)
            ind_bp = 0
            for ind_tbp, part in enumerate(['full_body', 'head', 'torso']):
                # import pdb; pdb.set_trace()
                if part == 'full_body':
                    inds_mirr = [0, 1, 2, 5, 6, 3, 4, 7]
                elif part == 'head':
                    inds_mirr = [0, 2, 1, 3, 4]
                else:
                    inds_mirr = [0, 1]
                for ind_sbp, subpart in enumerate(all_parts[part]):
                    if do_flip:
                        ind_sbp_corr = inds_mirr[ind_sbp]      # we use this if the image is mirrored later on
                    else:
                        ind_sbp_corr = ind_sbp
                    bp_name = subpart[0]
                    bp_indices = subpart[1]
                    body_part_index_list.append(bp_indices)
                    body_part_name_list.append(bp_name)
                    # create matrix slice
                    xx = [mask==ind for ind in bp_indices]
                    xx_mat = (np.stack(xx).sum(axis=0))
                    # body_part_matrix_multiple_hot[ind_bp, :, :] = xx_mat
                    # add to matrix
                    body_part_matrix_np[ind_tbp, xx_mat>0] = ind_sbp_corr
                    ind_bp += 1
            body_part_weight_masks_np = np.zeros((n_tbp, mask.shape[0], mask.shape[1]))
            body_part_weight_masks_np[0, mask>0] = 1   # full body
            body_part_weight_masks_np[1, body_part_matrix_np[0, :, :]==1] = 1   # head
            body_part_weight_masks_np[2, body_part_matrix_np[0, :, :]==2] = 1   # torso
            body_part_matrix_np[body_part_weight_masks_np==0] = 16
            body_part_matrix = torch.Tensor(body_part_matrix_np + 2.0)  # / 100

            # import pdb; pdb.set_trace()

            bbox_c_int0 = [int(bbox_c[0]), int(bbox_c[1])]
            bbox_c_int1 = [int(bbox_c[0])+10, int(bbox_c[1])+10]
            '''bpm_c0 = body_part_matrix[:, bbox_c_int0[1], bbox_c_int0[0]].clone()
            bpm_c1 = body_part_matrix[:, bbox_c_int1[1], bbox_c_int1[0]].clone()
            zero_replacement = torch.Tensor([0, 0, 0.99])
            body_part_matrix[:, bbox_c_int0[1], bbox_c_int0[0]] = zero_replacement
            body_part_matrix[:, bbox_c_int1[1], bbox_c_int1[0]] = 1'''
            ii = 3
            bpm_c0 = body_part_matrix[2, bbox_c_int0[1]-ii:bbox_c_int0[1]+ii, bbox_c_int0[0]-ii:bbox_c_int0[0]+ii]
            bpm_c1 = body_part_matrix[2, bbox_c_int1[1]-ii:bbox_c_int1[1]+ii, bbox_c_int1[0]-ii:bbox_c_int1[0]+ii]
            body_part_matrix[2, bbox_c_int0[1]-ii:bbox_c_int0[1]+ii, bbox_c_int0[0]-ii:bbox_c_int0[0]+ii] = 0
            body_part_matrix[2, bbox_c_int1[1]-ii:bbox_c_int1[1]+ii, bbox_c_int1[0]-ii:bbox_c_int1[0]+ii] = 255
            body_part_matrix = (body_part_matrix).long()
            # body_part_name_list
            # ['other', 'head', 'torso', 'right front leg', 'right back leg', 'left front leg', 'left back leg', 'tail', 'other', 'right ear', 'left ear', 'muzzle', 'nose', 'other', 'neck']
            # swap indices:
            # bp_mirroring_inds = [0, 1, 2, 5, 6, 3, 4, 7, 8, 10, 9, 11, 12, 13, 14]


        r = 0
        # self.is_train = False
        if self.do_augment:
            s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
            r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
            # Flip
            if do_flip:
                img = fliplr(img)
                if self.calc_seg:
                    seg = fliplr(seg)
                    body_part_matrix = fliplr(body_part_matrix)
                c[0] = img.size(2) - c[0]
            # Color
            img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
            img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
            img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)

        # Prepare image and groundtruth map
        inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
        inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)

        # import pdb; pdb.set_trace()

        if self.calc_seg:
            seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)

            # 'crop' will divide by 255 and perform zero padding (
            #   -> weird function that tries to rescale! Because of that I add zeros and ones in the beginning
            xx = body_part_matrix.clone()

            # import pdb; pdb.set_trace()


            body_part_matrix = crop(body_part_matrix, c, s, [self.inp_res, self.inp_res], rot=r, interp='nearest')  
                    
            body_part_matrix = body_part_matrix*255 - 2

            body_part_matrix[body_part_matrix == -2] = -1
            body_part_matrix[body_part_matrix == 16] = -1
            body_part_matrix[body_part_matrix == 253] = -1

            '''print(np.unique(body_part_matrix.numpy()))
            print(np.unique(body_part_matrix[0, :, :].numpy()))
            print(np.unique(body_part_matrix[1, :, :].numpy()))
            print(np.unique(body_part_matrix[2, :, :].numpy()))'''

            # import cv2
            # cv2.imwrite('/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/yy2.png', np.asarray((inp[0, :, :]+1)*100, np.uint8))
            # cv2.imwrite('/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/yy3.png', (40*(1+body_part_matrix[0, :, :].numpy())).astype(np.uint8))



        # Generate ground truth
        nparts = 24
        target_weight = torch.zeros(nparts, 1)
        target = torch.zeros(nparts, self.out_res, self.out_res)
        pts = torch.zeros((nparts, 3))                        
        tpts = torch.zeros((nparts, 3))                        

        # import pdb; pdb.set_trace()


        # meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : [self.out_res, self.out_res], 'name' : name,
        #     'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}
        # meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : self.out_res,
        #     'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}   
        # meta = {'index' : index, 'center' : c, 'scale' : s,
        #     'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 
        #    'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index,
        #    'ind_dataset': 0}   # ind_dataset: 0 for stanext or stanexteasy or stanext 24
        meta = {'index' : index, 'center' : c, 'scale' : s,
            'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 
           'ind_dataset': 3} 

        #import pdb; pdb.set_trace()


        if self.dataset_mode=='keyp_and_seg_and_partseg':
            # meta = {}
            meta['silh'] = seg[0, :, :]
            meta['name'] = name
            meta['body_part_matrix'] = body_part_matrix.long()
            # meta['body_part_weights'] = body_part_weight_masks 
            # import pdb; pdb.set_trace()
            return inp, target, meta
        else:
            raise ValueError



    def __len__(self):
        if self.is_train:
            return len(self.train_set)  # len(self.train_list)
        else:
            return len(self.val_set)   # len(self.valid_list)