File size: 17,701 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import gzip
import json
import os
import glob
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage
import xml.etree.ElementTree as ET

from csv import DictReader
from pycocotools.mask import decode as decode_RLE

import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../../../'))
# import stacked_hourglass.res
# from stacked_hourglass.datasets.common import DataInfo
from src.configs.anipose_data_info import COMPLETE_DATA_INFO
from src.stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from src.stacked_hourglass.utils.misc import to_torch
from src.stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import src.stacked_hourglass.datasets.utils_stanext as utils_stanext 
from src.stacked_hourglass.utils.visualization import save_input_image_with_keypoints
# from configs.dog_breeds.dog_breed_class import COMPLETE_ABBREV_DICT, COMPLETE_SUMMARY_BREEDS, SIM_MATRIX_RAW, SIM_ABBREV_INDICES 



class AniPose(data.Dataset):
    DATA_INFO = COMPLETE_DATA_INFO

    # Suggested joints to use for average PCK calculations.
    ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]      # don't know ...

    def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
                 scale_factor=0.25, rot_factor=30, label_type='Gaussian', 
                 do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only'):
        # self.img_folder_mpii = image_path # root image folders
        self.is_train = is_train # training set or test set
        if do_augment == 'yes':
            self.do_augment = True
        elif do_augment == 'no':
            self.do_augment = False
        elif do_augment=='default':
            if self.is_train:
                self.do_augment = True
            else:
                self.do_augment = False
        else:
            raise ValueError
        self.inp_res = inp_res
        self.out_res = out_res
        self.sigma = sigma
        self.scale_factor = scale_factor
        self.rot_factor = rot_factor
        self.label_type = label_type
        self.dataset_mode = dataset_mode
        if self.dataset_mode=='complete' or self.dataset_mode=='keyp_and_seg':
            self.calc_seg = True
        else:
            self.calc_seg = False

        self.kp_dict = self.keyp_name_to_ind()

        # import pdb; pdb.set_trace()

        self.top_folder = '/ps/scratch/nrueegg/new_projects/Animals/data/animal_pose_dataset/'
        self.folder_imgs_0 = '/ps/project/datasets/VOCdevkit/VOC2012/JPEGImages/'
        self.folder_imgs_1 = os.path.join(self.top_folder, 'animalpose_image_part2', 'dog')
        self.folder_annot_0 = os.path.join(self.top_folder, 'PASCAL2011_animal_annotation', 'dog')
        self.folder_annot_1 = os.path.join(self.top_folder, 'animalpose_anno2', 'dog')
        all_annot_files_0 = glob.glob(self.folder_annot_0 + '/*.xml')       # 1571
        '''all_annot_files_0_raw.sort()
        all_annot_files_0 = []                                                  # 1331
        for ind_f, f in enumerate(all_annot_files_0_raw):
            name = (f.split('/')[-1]).split('.xml')[0]
            name_main = name[:-2]
            if ind_f > 0:
                if (not name_main == name_main_last) or (ind_f == len(all_annot_files_0_raw)-1):
                    all_annot_files_0.append(f_last)
            f_last = f
            name_main_last = name_main'''
        all_annot_files_1 = glob.glob(self.folder_annot_1 + '/*.xml')       #  200
        all_annot_files = all_annot_files_0 + all_annot_files_1

        
        # old for hg_anipose_v0
        # self.train_name_list = all_annot_files
        # self.test_name_list = all_annot_files[0:50] + all_annot_files[200:250]
        # new for hg_anipose_v1
        self.train_name_list = all_annot_files[:-50]
        self.test_name_list = all_annot_files[-50:] 

        '''all_annot_files.sort()

        self.train_name_list = all_annot_files[:24]
        self.test_name_list = all_annot_files[24:36]'''

        print('anipose dataset size: ')
        print(len(self.train_name_list))
        print(len(self.test_name_list))


    # ----------------------------------------- 
    def read_content(sewlf, xml_file, annot_type='animal_pose'):
        # annot_type is either 'animal_pose' or 'animal_pose_voc' or 'voc'
        # examples:
        #   animal_pose: '/ps/scratch/nrueegg/new_projects/Animals/data/animal_pose_dataset/animalpose_anno2/cat/ca137.xml'
        #   animal_pose_voc: '/ps/scratch/nrueegg/new_projects/Animals/data/animal_pose_dataset/PASCAL2011_animal_annotation/cat/2008_005380_1.xml'
        #   voc: '/ps/project/datasets/VOCdevkit/VOC2012/Annotations/2011_000192.xml'
        if annot_type == 'animal_pose' or annot_type == 'animal_pose_voc':
            my_dict = {}
            tree = ET.parse(xml_file)
            root = tree.getroot()
            for child in root:  # list
                if child.tag == 'image':
                    my_dict['image'] = child.text
                elif child.tag == 'category':
                    my_dict['category'] = child.text
                elif child.tag == 'visible_bounds':
                    my_dict['visible_bounds'] = child.attrib
                elif child.tag == 'keypoints':
                    n_kp = len(child)
                    xyzvis = np.zeros((n_kp, 4))
                    kp_names = []
                    for ind_kp, kp in enumerate(child):    # list
                        xyzvis[ind_kp, 0] = kp.attrib['x']
                        xyzvis[ind_kp, 1] = kp.attrib['y']
                        xyzvis[ind_kp, 2] = kp.attrib['z']
                        xyzvis[ind_kp, 3] = kp.attrib['visible']
                        kp_names.append(kp.attrib['name'])
                    my_dict['keypoints_xyzvis'] = xyzvis
                    my_dict['keypoints_names'] = kp_names
                elif child.tag == 'voc_id':             # animal_pose_voc only
                    my_dict['voc_id'] = child.text
                elif child.tag == 'polylinesegments':   # animal_pose_voc only
                    my_dict['polylinesegments'] = child[0].attrib
                else:
                    print('tag does not exist: ' + child.tag)
            # print(my_dict)
        elif annot_type == 'voc':
            my_dict = {}
            print('not yet read')
        else:
            print('this annot_type does not exist')
            import pdb; pdb.set_trace()
        return my_dict


    def keyp_name_to_ind(self):
        '''AniPose_JOINT_NAMES = [
            'L_Eye', 'R_Eye', 'Nose', 'L_EarBase', 'Throat', 'R_F_Elbow', 'R_F_Paw', 
            'R_B_Paw', 'R_EarBase', 'L_F_Elbow', 'L_F_Paw', 'Withers', 'TailBase', 
            'L_B_Paw', 'L_B_Elbow', 'R_B_Elbow', 'L_F_Knee', 'R_F_Knee', 'L_B_Knee', 
            'R_B_Knee']'''
        kps = self.DATA_INFO.joint_names
        kps_dict = {}
        for ind_kp, kp in enumerate(kps):
            kps_dict[kp] = ind_kp
            kps_dict[kp.lower()] = ind_kp
            if kp.lower() == 'l_earbase':
                kps_dict['l_ear'] = ind_kp
            if kp.lower() == 'r_earbase':
                kps_dict['r_ear'] = ind_kp
            if kp.lower() == 'tailbase':
                kps_dict['tail'] = ind_kp
        return kps_dict



    def __getitem__(self, index):

        # import pdb; pdb.set_trace()

        if self.is_train:
            xml_path = self.train_name_list[index]
        else:
            xml_path = self.test_name_list[index]

        name = (xml_path.split('/')[-1]).split('.xml')[0]
        annot_dict = self.read_content(xml_path, annot_type='animal_pose_voc')

        if xml_path.split('/')[-3] == 'PASCAL2011_animal_annotation':
            img_path = os.path.join(self.folder_imgs_0, annot_dict['image'] + '.jpg')
            keyword_ymin = 'ymin'
        else:
            # import pdb; pdb.set_trace()
            img_path = os.path.join(self.folder_imgs_1, annot_dict['image'])
            keyword_ymin = 'xmax'

        '''print(img_path)
        print(annot_dict['keypoints_xyzvis'].shape)
        print(annot_dict['keypoints_names'])'''



        sf = self.scale_factor
        rf = self.rot_factor



        vis_np = np.zeros((self.DATA_INFO.n_keyp))
        pts_np = np.ones((self.DATA_INFO.n_keyp, 2)) * (-1000)
        for ind_key, key in enumerate(annot_dict['keypoints_names']):
            key_lower = key.lower()
            ind_new = self.kp_dict[key_lower]
            vis_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 3]
            # remark: the first training run (animalpose_hg8_v0) was without subtracting 1 which would be important!
            # pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2]

            # what we were doing until 08.09.2022:
            pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2] - 1

            # new 08.09.2022
            # pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2]  

            # pts_np[ind_new] = annot_dict['keypoints_xyzvis'][ind_key, 0:2]  # - 1



        '''vis_np = annot_dict['keypoints_xyzvis'][:20, 3]
        pts_np = annot_dict['keypoints_xyzvis'][:20, :2]
        pts_np[vis_np==0] = -1000'''

        pts_np = np.concatenate((pts_np, vis_np[:, None]), axis=1)
        pts = torch.Tensor(pts_np)

        # what we were doing until 08.09.2022:
        # bbox_xywh = [float(annot_dict['visible_bounds']['xmin']), float(annot_dict['visible_bounds'][keyword_ymin]), \
        #             float(annot_dict['visible_bounds']['width']), float(annot_dict['visible_bounds']['height'])]
        bbox_xywh = [float(annot_dict['visible_bounds']['xmin'])-1, float(annot_dict['visible_bounds'][keyword_ymin])-1, \
                    float(annot_dict['visible_bounds']['width']), float(annot_dict['visible_bounds']['height'])]



        '''pts = torch.Tensor(np.asarray(data['joints'])[:20, :])
        # pts[:, 0:2] -= 1  # Convert pts to zero based

        # inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
        # sf = scale * 200.0 / res[0]  # res[0]=256
        # center = center * 1.0 / sf
        # scale = scale / sf = 256 / 200
        # h = 200 * scale
        bbox_xywh = data['img_bbox']'''

        bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
        bbox_max = max(bbox_xywh[2], bbox_xywh[3])
        bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
        # bbox_s = bbox_max / 200.      # the dog will fill the image -> bbox_max = 256
        # bbox_s = bbox_diag / 200.     # diagonal of the boundingbox will be 200
        bbox_s = bbox_max / 200. * 256. / 200.  # maximum side of the bbox will be 200
        c = torch.Tensor(bbox_c)
        s = bbox_s









        # For single-person pose estimation with a centered/scaled figure
        nparts = pts.size(0)
        img = load_image(img_path)  # CxHxW

        # segmentation map (we reshape it to 3xHxW, such that we can do the 
        #   same transformations as with the image)
        if self.calc_seg:
            raise NotImplementedError
            seg = torch.Tensor(utils_stanext.get_seg_from_entry(data)[None, :, :])
            seg = torch.cat(3*[seg])

        r = 0
        # self.is_train = False
        do_flip = False
        if self.do_augment:
            s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
            r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
            # Flip
            if random.random() <= 0.5:
                do_flip = True
                img = fliplr(img)
                if self.calc_seg:
                    seg = fliplr(seg)
                # pts = shufflelr(pts, img.size(2), self.DATA_INFO.hflip_indices)
                # remark: for BITE we figure out that a -1 was missing in the point mirroring term
                # idea:
                #   image coordinates are 0, 1, 2, 3
                #   image size is 4
                #   the new point location for former 0 should be 3 and not 4!
                pts = shufflelr(pts, img.size(2)-1, self.DATA_INFO.hflip_indices)
                c[0] = img.size(2) - c[0] - 1
            # Color
            img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
            img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
            img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)

        # Prepare image and groundtruth map
        inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
        inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
        if self.calc_seg:
            seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)

        # Generate ground truth
        tpts = pts.clone()
        target_weight = tpts[:, 2].clone().view(nparts, 1)

        
        # cvpr version:
        '''
        target = torch.zeros(nparts, self.out_res, self.out_res)
        for i in range(nparts):
            # if tpts[i, 2] > 0: # This is evil!!
            if tpts[i, 1] > 0:
                tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False))
                target[i], vis = draw_labelmap(target[i], tpts[i]-1, self.sigma, type=self.label_type)
                target_weight[i, 0] *= vis
        # NEW:
        target_new, vis_new = draw_multiple_labelmaps((self.out_res, self.out_res), tpts[:, :2]-1, self.sigma, type=self.label_type)
        target_weight_new = tpts[:, 2].clone().view(nparts, 1) * vis_new
        target_new[(target_weight_new==0).reshape((-1)), :, :] = 0
        '''

        target = torch.zeros(nparts, self.out_res, self.out_res)
        for i in range(nparts):
            # if tpts[i, 2] > 0: # This is evil!!
            '''if tpts[i, 1] > 0:
                tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2], c, s, [self.out_res, self.out_res], rot=r, as_int=False))
                target[i], vis = draw_labelmap(target[i], tpts[i], self.sigma, type=self.label_type)
                target_weight[i, 0] *= vis'''
            if tpts[i, 1] > 0:
                # this pytorch function (transforms) assumes that coordinates which start at 1 instead of 0!
                tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False)) - 1
                target[i], vis = draw_labelmap(target[i], tpts[i], self.sigma, type=self.label_type)
                target_weight[i, 0] *= vis










        # Meta info
        '''this_breed = self.breed_dict[name.split('/')[0]]'''

        # add information about location within breed similarity matrix
        '''folder_name = name.split('/')[0]
        breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
        abbrev = COMPLETE_ABBREV_DICT[breed_name]
        try:
            sim_breed_index = COMPLETE_SUMMARY_BREEDS[abbrev]._ind_in_xlsx_matrix 
        except: # some breeds are not in the xlsx file
            sim_breed_index = -1'''

        # meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : [self.out_res, self.out_res], 'name' : name,
        #     'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}
        # meta = {'index' : index, 'center' : c, 'scale' : s, 'do_flip' : do_flip, 'rot' : r, 'resolution' : self.out_res,
        #     'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 'breed_index': this_breed['index']}   
        # meta = {'index' : index, 'center' : c, 'scale' : s,
        #    'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 
        #    'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index}
        meta = {'index' : index, 'center' : c, 'scale' : s,
                'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight}

        # import pdb; pdb.set_trace()








        if self.dataset_mode=='keyp_only':
            '''
            debugging_path = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/anipose/'
            if self.is_train:
                prefix = 'anipose_train_'
            else:
                prefix = 'anipose_test_'
            save_input_image_with_keypoints(inp, meta['tpts'], out_path=debugging_path + prefix + str(index) + '.png', ratio_in_out=self.inp_res/self.out_res)
            '''
            return inp, target, meta
        elif self.dataset_mode=='keyp_and_seg':
            raise NotImplementedError
            meta['silh'] = seg[0, :, :]
            meta['name'] = name
            return inp, target, meta
        elif self.dataset_mode=='complete':
            raise NotImplementedError
            target_dict = meta
            target_dict['silh'] = seg[0, :, :]
            # NEW for silhouette loss
            distmat_tofg = ndimage.distance_transform_edt(1-target_dict['silh'])    # values between 0 and up to 100 or more
            target_dict['silh_distmat_tofg'] = distmat_tofg     
            distmat_tobg = ndimage.distance_transform_edt(target_dict['silh'])    
            target_dict['silh_distmat_tobg'] = distmat_tobg    
            return inp, target_dict
        else:
            raise ValueError



    def __len__(self):
        if self.is_train:
            return len(self.train_name_list)  # len(self.train_list)
        else:
            return len(self.test_name_list)   # len(self.valid_list)