Spaces:
Runtime error
Runtime error
File size: 13,247 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# some code from https://raw.githubusercontent.com/weigq/3d_pose_baseline_pytorch/master/src/model.py
from __future__ import absolute_import
from __future__ import print_function
import torch
import torch.nn as nn
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
# from priors.vae_pose_model.vae_model import VAEmodel
from priors.normalizing_flow_prior.normalizing_flow_prior import NormalizingFlowPrior
def weight_init_dangerous(m):
# this is dangerous as it may overwrite the normalizing flow weights
if isinstance(m, nn.Linear):
nn.init.kaiming_normal(m.weight)
class Linear(nn.Module):
def __init__(self, linear_size, p_dropout=0.5):
super(Linear, self).__init__()
self.l_size = linear_size
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(p_dropout)
self.w1 = nn.Linear(self.l_size, self.l_size)
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
self.w2 = nn.Linear(self.l_size, self.l_size)
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
y = self.w2(y)
y = self.batch_norm2(y)
y = self.relu(y)
y = self.dropout(y)
out = x + y
return out
class LinearModel(nn.Module):
def __init__(self,
linear_size=1024,
num_stage=2,
p_dropout=0.5,
input_size=16*2,
output_size=16*3):
super(LinearModel, self).__init__()
self.linear_size = linear_size
self.p_dropout = p_dropout
self.num_stage = num_stage
# input
self.input_size = input_size # 2d joints: 16 * 2
# output
self.output_size = output_size # 3d joints: 16 * 3
# process input to linear size
self.w1 = nn.Linear(self.input_size, self.linear_size)
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
self.linear_stages = []
for l in range(num_stage):
self.linear_stages.append(Linear(self.linear_size, self.p_dropout))
self.linear_stages = nn.ModuleList(self.linear_stages)
# post-processing
self.w2 = nn.Linear(self.linear_size, self.output_size)
# helpers (relu and dropout)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(self.p_dropout)
def forward(self, x):
# pre-processing
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
# linear layers
for i in range(self.num_stage):
y = self.linear_stages[i](y)
# post-processing
y = self.w2(y)
return y
class LinearModelComplete(nn.Module):
def __init__(self,
linear_size=1024,
num_stage_comb=2,
num_stage_heads=1,
num_stage_heads_pose=1,
trans_sep=False,
p_dropout=0.5,
input_size=16*2,
intermediate_size=1024,
output_info=None,
n_joints=25,
n_z=512,
add_z_to_3d_input=False,
n_segbps=64*2,
add_segbps_to_3d_input=False,
structure_pose_net='default',
fix_vae_weights=True,
nf_version=None): # 0): n_silh_enc
super(LinearModelComplete, self).__init__()
if add_z_to_3d_input:
self.n_z_to_add = n_z # 512
else:
self.n_z_to_add = 0
if add_segbps_to_3d_input:
self.n_segbps_to_add = n_segbps # 64
else:
self.n_segbps_to_add = 0
self.input_size = input_size
self.linear_size = linear_size
self.p_dropout = p_dropout
self.num_stage_comb = num_stage_comb
self.num_stage_heads = num_stage_heads
self.num_stage_heads_pose = num_stage_heads_pose
self.trans_sep = trans_sep
self.input_size = input_size
self.intermediate_size = intermediate_size
self.structure_pose_net = structure_pose_net
self.fix_vae_weights = fix_vae_weights # only relevant if structure_pose_net='vae'
self.nf_version = nf_version
if output_info is None:
pose = {'name': 'pose', 'n': n_joints*6, 'out_shape':[n_joints, 6]}
cam = {'name': 'flength', 'n': 1}
if self.trans_sep:
translation_xy = {'name': 'trans_xy', 'n': 2}
translation_z = {'name': 'trans_z', 'n': 1}
self.output_info = [pose, translation_xy, translation_z, cam]
else:
translation = {'name': 'trans', 'n': 3}
self.output_info = [pose, translation, cam]
if self.structure_pose_net == 'vae' or self.structure_pose_net == 'normflow':
global_pose = {'name': 'global_pose', 'n': 1*6, 'out_shape':[1, 6]}
self.output_info.append(global_pose)
else:
self.output_info = output_info
self.linear_combined = LinearModel(linear_size=self.linear_size,
num_stage=self.num_stage_comb,
p_dropout=p_dropout,
input_size=self.input_size + self.n_segbps_to_add + self.n_z_to_add, ######
output_size=self.intermediate_size)
self.output_info_linear_models = []
for ind_el, element in enumerate(self.output_info):
if element['name'] == 'pose':
num_stage = self.num_stage_heads_pose
if self.structure_pose_net == 'default':
output_size_pose_lin = element['n']
elif self.structure_pose_net == 'vae':
# load vae decoder
self.pose_vae_model = VAEmodel()
self.pose_vae_model.initialize_with_pretrained_weights()
# define the input size of the vae decoder
output_size_pose_lin = self.pose_vae_model.latent_size
elif self.structure_pose_net == 'normflow':
# the following will automatically be initialized
self.pose_normflow_model = NormalizingFlowPrior(nf_version=self.nf_version)
output_size_pose_lin = element['n'] - 6 # no global rotation
else:
raise NotImplementedError
self.output_info_linear_models.append(LinearModel(linear_size=self.linear_size,
num_stage=num_stage,
p_dropout=p_dropout,
input_size=self.intermediate_size,
output_size=output_size_pose_lin))
else:
if element['name'] == 'global_pose':
num_stage = self.num_stage_heads_pose
else:
num_stage = self.num_stage_heads
self.output_info_linear_models.append(LinearModel(linear_size=self.linear_size,
num_stage=num_stage,
p_dropout=p_dropout,
input_size=self.intermediate_size,
output_size=element['n']))
element['linear_model_index'] = ind_el
self.output_info_linear_models = nn.ModuleList(self.output_info_linear_models)
def forward(self, x):
device = x.device
# combined stage
if x.shape[1] == self.input_size + self.n_segbps_to_add + self.n_z_to_add:
y = self.linear_combined(x)
elif x.shape[1] == self.input_size + self.n_segbps_to_add:
x_mod = torch.cat((x, torch.normal(0, 1, size=(x.shape[0], self.n_z_to_add)).to(device)), dim=1)
y = self.linear_combined(x_mod)
else:
print(x.shape)
print(self.input_size)
print(self.n_segbps_to_add)
print(self.n_z_to_add)
raise ValueError
# heads
results = {}
results_trans = {}
for element in self.output_info:
linear_model = self.output_info_linear_models[element['linear_model_index']]
if element['name'] == 'pose':
if self.structure_pose_net == 'default':
results['pose'] = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1]))
normflow_z = None
elif self.structure_pose_net == 'vae':
res_lin = linear_model(y)
if self.fix_vae_weights:
self.pose_vae_model.requires_grad_(False) # let gradients flow through but don't update the parameters
res_vae = self.pose_vae_model.inference(feat=res_lin)
self.pose_vae_model.requires_grad_(True)
else:
res_vae = self.pose_vae_model.inference(feat=res_lin)
res_pose_not_glob = res_vae.reshape((-1, element['out_shape'][0], element['out_shape'][1]))
normflow_z = None
elif self.structure_pose_net == 'normflow':
normflow_z = linear_model(y)*0.1
self.pose_normflow_model.requires_grad_(False) # let gradients flow though but don't update the parameters
res_pose_not_glob = self.pose_normflow_model.run_backwards(z=normflow_z).reshape((-1, element['out_shape'][0]-1, element['out_shape'][1]))
else:
raise NotImplementedError
elif element['name'] == 'global_pose':
res_pose_glob = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1]))
elif element['name'] == 'trans_xy' or element['name'] == 'trans_z':
results_trans[element['name']] = linear_model(y)
else:
results[element['name']] = linear_model(y)
if self.trans_sep:
results['trans'] = torch.cat((results_trans['trans_xy'], results_trans['trans_z']), dim=1)
# prepare pose including global rotation
if self.structure_pose_net == 'vae':
# results['pose'] = torch.cat((res_pose_glob, res_pose_not_glob), dim=1)
results['pose'] = torch.cat((res_pose_glob, res_pose_not_glob[:, 1:, :]), dim=1)
elif self.structure_pose_net == 'normflow':
results['pose'] = torch.cat((res_pose_glob, res_pose_not_glob[:, :, :]), dim=1)
# return a dictionary which contains all results
results['normflow_z'] = normflow_z
return results # this is a dictionary
# ------------------------------------------
# for pretraining of the 3d model only:
# (see combined_model/model_shape_v2.py)
class Wrapper_LinearModelComplete(nn.Module):
def __init__(self,
linear_size=1024,
num_stage_comb=2,
num_stage_heads=1,
num_stage_heads_pose=1,
trans_sep=False,
p_dropout=0.5,
input_size=16*2,
intermediate_size=1024,
output_info=None,
n_joints=25,
n_z=512,
add_z_to_3d_input=False,
n_segbps=64*2,
add_segbps_to_3d_input=False,
structure_pose_net='default',
fix_vae_weights=True,
nf_version=None):
self.add_segbps_to_3d_input = add_segbps_to_3d_input
super(Wrapper_LinearModelComplete, self).__init__()
self.model_3d = LinearModelComplete(linear_size=linear_size,
num_stage_comb=num_stage_comb,
num_stage_heads=num_stage_heads,
num_stage_heads_pose=num_stage_heads_pose,
trans_sep=trans_sep,
p_dropout=p_dropout, # 0.5,
input_size=input_size,
intermediate_size=intermediate_size,
output_info=output_info,
n_joints=n_joints,
n_z=n_z,
add_z_to_3d_input=add_z_to_3d_input,
n_segbps=n_segbps,
add_segbps_to_3d_input=add_segbps_to_3d_input,
structure_pose_net=structure_pose_net,
fix_vae_weights=fix_vae_weights,
nf_version=nf_version)
def forward(self, input_vec):
# input_vec = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
# predict 3d parameters (those are normalized, we need to correct mean and std in a next step)
output = self.model_3d(input_vec)
return output |