File size: 54,415 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb37a1f
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

import pickle as pkl
import numpy as np
import torchvision.models as models
from torchvision import transforms
import torch
from torch import nn
from torch.nn.parameter import Parameter
from kornia.geometry.subpix import dsnt     # kornia 0.4.0

import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from stacked_hourglass.utils.evaluation import get_preds_soft
from stacked_hourglass import hg1, hg2, hg8
from lifting_to_3d.linear_model import LinearModelComplete, LinearModel      
from lifting_to_3d.inn_model_for_shape import INNForShape
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d
from smal_pytorch.smal_model.smal_torch_new import SMAL
from smal_pytorch.renderer.differentiable_renderer import SilhRenderer
from bps_2d.bps_for_segmentation import SegBPS
# from configs.SMAL_configs import SMAL_MODEL_DATA_PATH as SHAPE_PRIOR
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from configs.SMAL_configs import MEAN_DOG_BONE_LENGTHS_NO_RED, VERTEX_IDS_TAIL

# NEW: for graph cnn part
from smal_pytorch.smal_model.smal_torch_new import SMAL
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from graph_networks.graphcmr.utils_mesh import Mesh
from graph_networks.graphcmr.graph_cnn_groundcontact_multistage import GraphCNNMS




class SmallLinear(nn.Module):
    def __init__(self, input_size=64, output_size=30, linear_size=128):
        super(SmallLinear, self).__init__()
        self.relu = nn.ReLU(inplace=True)
        self.w1 = nn.Linear(input_size, linear_size)
        self.w2 = nn.Linear(linear_size, linear_size)
        self.w3 = nn.Linear(linear_size, output_size)
    def forward(self, x):
        # pre-processing
        y = self.w1(x)
        y = self.relu(y)
        y = self.w2(y)
        y = self.relu(y)
        y = self.w3(y)
        return y


class MyConv1d(nn.Module):
    def __init__(self, input_size=37, output_size=30, start=True):
        super(MyConv1d, self).__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.start = start
        self.weight = Parameter(torch.ones((self.output_size)))
        self.bias = Parameter(torch.zeros((self.output_size)))
    def forward(self, x):
        # pre-processing
        if self.start:
            y = x[:, :self.output_size]
        else:
            y = x[:, -self.output_size:]
        y = y * self.weight[None, :] + self.bias[None, :]
        return y


class ModelShapeAndBreed(nn.Module):
    def __init__(self, smal_model_type, n_betas=10, n_betas_limbs=13, n_breeds=121, n_z=512, structure_z_to_betas='default'):
        super(ModelShapeAndBreed, self).__init__()
        self.n_betas = n_betas
        self.n_betas_limbs = n_betas_limbs   # n_betas_logscale
        self.n_breeds = n_breeds
        self.structure_z_to_betas = structure_z_to_betas
        if self.structure_z_to_betas == '1dconv':
            if not (n_z == self.n_betas+self.n_betas_limbs):
                raise ValueError
        self.smal_model_type = smal_model_type
        # shape branch
        self.resnet = models.resnet34(pretrained=False)  
        # replace the first layer
        n_in = 3 + 1
        self.resnet.conv1 = nn.Conv2d(n_in, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        # replace the last layer
        self.resnet.fc = nn.Linear(512, n_z) 
        # softmax
        self.soft_max = torch.nn.Softmax(dim=1)
        # fc network (and other versions) to connect z with betas
        p_dropout = 0.2
        if self.structure_z_to_betas == 'default':
            self.linear_betas = LinearModel(linear_size=1024,     
                                                num_stage=1,
                                                p_dropout=p_dropout, 
                                                input_size=n_z,
                                                output_size=self.n_betas)
            self.linear_betas_limbs = LinearModel(linear_size=1024,    
                                                num_stage=1,
                                                p_dropout=p_dropout, 
                                                input_size=n_z,
                                                output_size=self.n_betas_limbs)
        elif self.structure_z_to_betas == 'lin':
            self.linear_betas = nn.Linear(n_z, self.n_betas)
            self.linear_betas_limbs = nn.Linear(n_z, self.n_betas_limbs)
        elif self.structure_z_to_betas == 'fc_0':
            self.linear_betas = SmallLinear(linear_size=128,     # 1024,
                                                input_size=n_z,
                                                output_size=self.n_betas)
            self.linear_betas_limbs = SmallLinear(linear_size=128,     # 1024,
                                                input_size=n_z,
                                                output_size=self.n_betas_limbs)
        elif structure_z_to_betas == 'fc_1':
            self.linear_betas = LinearModel(linear_size=64,     # 1024,
                                                num_stage=1,
                                                p_dropout=0, 
                                                input_size=n_z,
                                                output_size=self.n_betas)
            self.linear_betas_limbs = LinearModel(linear_size=64,     # 1024,
                                                num_stage=1,
                                                p_dropout=0, 
                                                input_size=n_z,
                                                output_size=self.n_betas_limbs)
        elif self.structure_z_to_betas == '1dconv':
            self.linear_betas = MyConv1d(n_z, self.n_betas, start=True)
            self.linear_betas_limbs = MyConv1d(n_z, self.n_betas_limbs, start=False)
        elif self.structure_z_to_betas == 'inn':
            self.linear_betas_and_betas_limbs = INNForShape(self.n_betas, self.n_betas_limbs, betas_scale=1.0, betas_limbs_scale=1.0)
        else:
            raise ValueError
        # network to connect latent shape vector z with dog breed classification
        self.linear_breeds = LinearModel(linear_size=1024,    # 1024,
                                            num_stage=1,
                                            p_dropout=p_dropout, 
                                            input_size=n_z,
                                            output_size=self.n_breeds)
        # shape multiplicator
        self.shape_multiplicator_np = np.ones(self.n_betas)
        with open(SMAL_MODEL_CONFIG[self.smal_model_type]['smal_model_data_path'], 'rb') as file:
            u = pkl._Unpickler(file)
            u.encoding = 'latin1'
            res = u.load()
        # shape predictions are centered around the mean dog of our dog model
        if 'dog_cluster_mean' in res.keys():
            self.betas_mean_np = res['dog_cluster_mean'] 
        else:
            assert res['cluster_means'].shape[0]==1
            self.betas_mean_np = res['cluster_means'][0, :]

                                        
    def forward(self, img, seg_raw=None, seg_prep=None):
        # img is the network input image 
        # seg_raw is before softmax and subtracting 0.5
        # seg_prep would be the prepared_segmentation
        if seg_prep is None:
            seg_prep = self.soft_max(seg_raw)[:, 1:2, :, :] - 0.5       
        input_img_and_seg = torch.cat((img, seg_prep), axis=1)
        res_output = self.resnet(input_img_and_seg)
        dog_breed_output = self.linear_breeds(res_output) 
        if self.structure_z_to_betas == 'inn':
            shape_output_orig, shape_limbs_output_orig = self.linear_betas_and_betas_limbs(res_output)
        else:
            shape_output_orig = self.linear_betas(res_output) * 0.1
            betas_mean = torch.tensor(self.betas_mean_np).float().to(img.device)
            shape_output = shape_output_orig + betas_mean[None, 0:self.n_betas]
            shape_limbs_output_orig = self.linear_betas_limbs(res_output)
            shape_limbs_output = shape_limbs_output_orig * 0.1
        output_dict = {'z': res_output,
                        'breeds': dog_breed_output,
                        'betas': shape_output_orig,
                        'betas_limbs': shape_limbs_output_orig}
        return output_dict



class LearnableShapedirs(nn.Module):
    def __init__(self, sym_ids_dict, shapedirs_init, n_betas, n_betas_fixed=10):
        super(LearnableShapedirs, self).__init__()
        # shapedirs_init = self.smal.shapedirs.detach()
        self.n_betas = n_betas
        self.n_betas_fixed = n_betas_fixed
        self.sym_ids_dict = sym_ids_dict
        sym_left_ids = self.sym_ids_dict['left']
        sym_right_ids = self.sym_ids_dict['right']
        sym_center_ids = self.sym_ids_dict['center']
        self.n_center = sym_center_ids.shape[0]
        self.n_left = sym_left_ids.shape[0]
        self.n_sd = self.n_betas - self.n_betas_fixed     # number of learnable shapedirs
        # get indices to go from half_shapedirs to shapedirs
        inds_back = np.zeros((3889))
        for ind in range(0, sym_center_ids.shape[0]):
            ind_in_forward = sym_center_ids[ind]
            inds_back[ind_in_forward] = ind
        for ind in range(0, sym_left_ids.shape[0]):
            ind_in_forward = sym_left_ids[ind]
            inds_back[ind_in_forward] = sym_center_ids.shape[0] + ind
        for ind in range(0, sym_right_ids.shape[0]):
            ind_in_forward = sym_right_ids[ind]
            inds_back[ind_in_forward] = sym_center_ids.shape[0] + sym_left_ids.shape[0] + ind
        self.register_buffer('inds_back_torch', torch.Tensor(inds_back).long())
        # self.smal.shapedirs: (51, 11667)
        # shapedirs: (3889, 3, n_sd)
        # shapedirs_half: (2012, 3, n_sd)
        sd = shapedirs_init[:self.n_betas, :].permute((1, 0)).reshape((-1, 3, self.n_betas))
        self.register_buffer('sd', sd)
        sd_center = sd[sym_center_ids, :, self.n_betas_fixed:]
        sd_left = sd[sym_left_ids, :, self.n_betas_fixed:]
        self.register_parameter('learnable_half_shapedirs_c0', torch.nn.Parameter(sd_center[:, 0, :].detach()))
        self.register_parameter('learnable_half_shapedirs_c2', torch.nn.Parameter(sd_center[:, 2, :].detach()))
        self.register_parameter('learnable_half_shapedirs_l0', torch.nn.Parameter(sd_left[:, 0, :].detach()))
        self.register_parameter('learnable_half_shapedirs_l1', torch.nn.Parameter(sd_left[:, 1, :].detach()))
        self.register_parameter('learnable_half_shapedirs_l2', torch.nn.Parameter(sd_left[:, 2, :].detach()))
    def forward(self):
        device = self.learnable_half_shapedirs_c0.device
        half_shapedirs_center = torch.stack((self.learnable_half_shapedirs_c0, \
                                            torch.zeros((self.n_center, self.n_sd)).to(device), \
                                            self.learnable_half_shapedirs_c2), axis=1)
        half_shapedirs_left = torch.stack((self.learnable_half_shapedirs_l0, \
                                            self.learnable_half_shapedirs_l1, \
                                            self.learnable_half_shapedirs_l2), axis=1)
        half_shapedirs_right = torch.stack((self.learnable_half_shapedirs_l0, \
                                            - self.learnable_half_shapedirs_l1, \
                                            self.learnable_half_shapedirs_l2), axis=1)
        half_shapedirs_tot = torch.cat((half_shapedirs_center, half_shapedirs_left, half_shapedirs_right))
        shapedirs = torch.index_select(half_shapedirs_tot, dim=0, index=self.inds_back_torch)
        shapedirs_complete = torch.cat((self.sd[:, :, :self.n_betas_fixed], shapedirs), axis=2)      # (3889, 3, n_sd)
        shapedirs_complete_prepared = torch.cat((self.sd[:, :, :10], shapedirs), axis=2).reshape((-1, 30)).permute((1, 0))   # (n_sd, 11667)
        return shapedirs_complete, shapedirs_complete_prepared


class ModelRefinement(nn.Module):
    def __init__(self, n_betas=10, n_betas_limbs=7, n_breeds=121, n_keyp=20, n_joints=35, ref_net_type='add', graphcnn_type='inexistent', isflat_type='inexistent', shaperef_type='inexistent'):
        super(ModelRefinement, self).__init__()
        self.n_betas = n_betas
        self.n_betas_limbs = n_betas_limbs
        self.n_breeds = n_breeds
        self.n_keyp = n_keyp
        self.n_joints = n_joints
        self.n_out_seg = 256
        self.n_out_keyp = 256
        self.n_out_enc = 256
        self.linear_size = 1024
        self.linear_size_small = 128
        self.ref_net_type = ref_net_type
        self.graphcnn_type = graphcnn_type
        self.isflat_type = isflat_type
        self.shaperef_type = shaperef_type
        p_dropout = 0.2
        # --- segmentation encoder
        if self.ref_net_type in ['multrot_res34', 'multrot01all_res34']:
            self.ref_res = models.resnet34(pretrained=False)
        else:
            self.ref_res = models.resnet18(pretrained=False)
        # replace the first layer
        self.ref_res.conv1 = nn.Conv2d(2, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        # replace the last layer
        self.ref_res.fc = nn.Linear(512, self.n_out_seg) 
        # softmax
        self.soft_max = torch.nn.Softmax(dim=1)
        # --- keypoint encoder
        self.linear_keyp = LinearModel(linear_size=self.linear_size,
                                            num_stage=1,
                                            p_dropout=p_dropout, 
                                            input_size=n_keyp*2*2,
                                            output_size=self.n_out_keyp)
        # --- decoder
        self.linear_combined = LinearModel(linear_size=self.linear_size,
                                            num_stage=1,
                                            p_dropout=p_dropout, 
                                            input_size=self.n_out_seg+self.n_out_keyp,
                                            output_size=self.n_out_enc)
        # output info
        pose = {'name': 'pose', 'n': self.n_joints*6, 'out_shape':[self.n_joints, 6]}
        trans = {'name': 'trans_notnorm', 'n': 3}
        cam = {'name': 'flength_notnorm', 'n': 1}
        betas = {'name': 'betas', 'n': self.n_betas}
        betas_limbs = {'name': 'betas_limbs', 'n': self.n_betas_limbs}
        if self.shaperef_type=='inexistent':          
            self.output_info = [pose, trans, cam]   # , betas]
        else:
            self.output_info = [pose, trans, cam, betas, betas_limbs]
        # output branches
        self.output_info_linear_models = []
        for ind_el, element in enumerate(self.output_info):
            n_in = self.n_out_enc + element['n']
            self.output_info_linear_models.append(LinearModel(linear_size=self.linear_size,
                                    num_stage=1,
                                    p_dropout=p_dropout, 
                                    input_size=n_in,
                                    output_size=element['n']))
            element['linear_model_index'] = ind_el
        self.output_info_linear_models = nn.ModuleList(self.output_info_linear_models)
        # new: predict if the ground is flat
        if not self.isflat_type=='inexistent':          
            self.linear_isflat = LinearModel(linear_size=self.linear_size_small,
                                    num_stage=1,
                                    p_dropout=p_dropout, 
                                    input_size=self.n_out_enc,
                                    output_size=2) # answer is just yes or no

    
        # new for ground contact prediction: graph cnn
        if not self.graphcnn_type=='inexistent':
            num_downsampling = 1
            smal_model_type = '39dogs_norm'
            smal = SMAL(smal_model_type=smal_model_type, template_name='neutral')     
            ROOT_smal_downsampling = os.path.join(os.path.dirname(__file__), './../../data/graphcmr_data/')
            smal_downsampling_npz_name = 'mesh_downsampling_' + os.path.basename(SMAL_MODEL_CONFIG[smal_model_type]['smal_model_path']).replace('.pkl', '_template.npz')
            smal_downsampling_npz_path = ROOT_smal_downsampling + smal_downsampling_npz_name  # 'data/mesh_downsampling.npz'
            self.my_custom_smal_dog_mesh = Mesh(filename=smal_downsampling_npz_path, num_downsampling=num_downsampling, nsize=1, body_model=smal) # , device=device)
            # create GraphCNN
            num_layers = 2  # <= len(my_custom_mesh._A)-1
            n_resnet_out = self.n_out_enc       # 256
            num_channels = 256      # 512 
            self.graph_cnn = GraphCNNMS(mesh=self.my_custom_smal_dog_mesh, 
                                num_downsample = num_downsampling, 
                                num_layers = num_layers, 
                                n_resnet_out = n_resnet_out, 
                                num_channels = num_channels)    # .to(device)
        
    
    
    def forward(self, keyp_sh, keyp_pred, in_pose_3x3, in_trans_notnorm, in_cam_notnorm, in_betas, in_betas_limbs, seg_pred_prep=None, seg_sh_raw=None, seg_sh_prep=None):
        # img is the network input image 
        # seg_raw is before softmax and subtracting 0.5
        # seg_prep would be the prepared_segmentation
        batch_size = in_pose_3x3.shape[0]
        device = in_pose_3x3.device
        dtype = in_pose_3x3.dtype
        # --- segmentation encoder
        if seg_sh_prep is None:
            seg_sh_prep = self.soft_max(seg_sh_raw)[:, 1:2, :, :] - 0.5       # class 1 is the dog
        input_seg_conc = torch.cat((seg_sh_prep, seg_pred_prep), axis=1)  
        network_output_seg = self.ref_res(input_seg_conc)
        # --- keypoint encoder
        keyp_conc = torch.cat((keyp_sh.reshape((-1, keyp_sh.shape[1]*keyp_sh.shape[2])), keyp_pred.reshape((-1, keyp_sh.shape[1]*keyp_sh.shape[2]))), axis=1) 
        network_output_keyp = self.linear_keyp(keyp_conc)
        # --- decoder
        x = torch.cat((network_output_seg, network_output_keyp), axis=1)
        y_comb = self.linear_combined(x)
        in_pose_6d = rotmat_to_rot6d(in_pose_3x3.reshape((-1, 3, 3))).reshape((in_pose_3x3.shape[0], -1, 6))
        in_dict = {'pose': in_pose_6d,
                    'trans_notnorm': in_trans_notnorm,
                    'flength_notnorm': in_cam_notnorm, 
                    'betas': in_betas, 
                    'betas_limbs': in_betas_limbs}
        results = {}
        for element in self.output_info:
            # import pdb; pdb.set_trace()

            linear_model = self.output_info_linear_models[element['linear_model_index']]
            y = torch.cat((y_comb, in_dict[element['name']].reshape((-1, element['n']))), axis=1)
            if 'out_shape' in element.keys():
                if element['name'] == 'pose':
                    if self.ref_net_type in ['multrot', 'multrot01', 'multrot01all', 'multrotxx', 'multrot_res34', 'multrot01all_res34']:      # if self.ref_net_type == 'multrot' or self.ref_net_type == 'multrot_res34':
                        #   multiply the rotations with each other -> just predict a correction
                        #   the correction should be initialized as identity
                        # res_pose_out = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict[element['name']]
                        identity_rot6d = torch.tensor(([1., 0., 0., 1., 0., 0.])).repeat((in_pose_3x3.shape[0]*in_pose_3x3.shape[1], 1)).to(device=device, dtype=dtype)
                        if self.ref_net_type in ['multrot01', 'multrot01all', 'multrot01all_res34']:
                            res_pose_out = identity_rot6d + 0.1*(linear_model(y)).reshape((-1, element['out_shape'][1]))  
                        elif self.ref_net_type == 'multrotxx':
                            res_pose_out = identity_rot6d + 0.0*(linear_model(y)).reshape((-1, element['out_shape'][1]))    
                        else:
                            res_pose_out = identity_rot6d + (linear_model(y)).reshape((-1, element['out_shape'][1]))    
                        res_pose_rotmat = rot6d_to_rotmat(res_pose_out.reshape((-1, 6)))    # (bs*35, 3, 3)     .reshape((batch_size, -1, 3, 3))
                        res_tot_rotmat = torch.bmm(res_pose_rotmat.reshape((-1, 3, 3)), in_pose_3x3.reshape((-1, 3, 3))).reshape((batch_size, -1, 3, 3))   # (bs, 5, 3, 3)
                        results['pose_rotmat'] = res_tot_rotmat
                    elif self.ref_net_type == 'add':
                        res_6d = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict['pose']
                        results['pose_rotmat'] = rot6d_to_rotmat(res_6d.reshape((-1, 6))).reshape((batch_size, -1, 3, 3)) 
                    else:
                        raise ValueError
                else:
                    if self.ref_net_type in ['multrot01all', 'multrot01all_res34']:
                        results[element['name']] = (0.1*linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict[element['name']]
                    else:
                        results[element['name']] = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict[element['name']]
            else:
                if self.ref_net_type in ['multrot01all', 'multrot01all_res34']:
                    results[element['name']] = 0.1*linear_model(y) + in_dict[element['name']]     
                else:
                    results[element['name']] = linear_model(y) + in_dict[element['name']]  

        # add prediction if ground is flat
        if not self.isflat_type=='inexistent':
            isflat = self.linear_isflat(y_comb)
            results['isflat'] = isflat

        # add graph cnn
        if not self.graphcnn_type=='inexistent':
            ground_contact_downsampled, ground_cntact_all_stages_output = self.graph_cnn(y_comb)
            ground_contact = self.my_custom_smal_dog_mesh.upsample(ground_contact_downsampled.transpose(1,2))
            results['vertexwise_ground_contact'] = ground_contact

        return results




class ModelImageToBreed(nn.Module):
    def __init__(self, smal_model_type, arch='hg8', n_joints=35, n_classes=20, n_partseg=15, n_keyp=20, n_bones=24, n_betas=10, n_betas_limbs=7, n_breeds=121, image_size=256, n_z=512, thr_keyp_sc=None, add_partseg=True):
        super(ModelImageToBreed, self).__init__()
        self.n_classes = n_classes
        self.n_partseg = n_partseg
        self.n_betas = n_betas
        self.n_betas_limbs = n_betas_limbs
        self.n_keyp = n_keyp
        self.n_bones = n_bones
        self.n_breeds = n_breeds
        self.image_size = image_size
        self.upsample_seg = True
        self.threshold_scores = thr_keyp_sc 
        self.n_z = n_z
        self.add_partseg = add_partseg
        self.smal_model_type = smal_model_type
        # ------------------------------ STACKED HOUR GLASS ------------------------------        
        if arch == 'hg8':
            self.stacked_hourglass = hg8(pretrained=False, num_classes=self.n_classes, num_partseg=self.n_partseg, upsample_seg=self.upsample_seg, add_partseg=self.add_partseg)
        else:
            raise Exception('unrecognised model architecture: ' + arch)
        # ------------------------------ SHAPE AND BREED MODEL ------------------------------
        self.breed_model = ModelShapeAndBreed(smal_model_type=self.smal_model_type, n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_z=self.n_z)
    def forward(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
        batch_size = input_img.shape[0]
        device = input_img.device
        # ------------------------------ STACKED HOUR GLASS ------------------------------
        hourglass_out_dict = self.stacked_hourglass(input_img)
        last_seg = hourglass_out_dict['seg_final']
        last_heatmap = hourglass_out_dict['out_list_kp'][-1] 
        # - prepare keypoints (from heatmap)
        # normalize predictions -> from logits to probability distribution
        # last_heatmap_norm = dsnt.spatial_softmax2d(last_heatmap, temperature=torch.tensor(1))
        # keypoints = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=False) + 1   # (bs, 20, 2)
        # keypoints_norm = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=True)    # (bs, 20, 2)
        keypoints_norm, scores = get_preds_soft(last_heatmap, return_maxval=True, norm_coords=True)
        if self.threshold_scores is not None:
            scores[scores>self.threshold_scores] = 1.0
            scores[scores<=self.threshold_scores] = 0.0
        # ------------------------------ SHAPE AND BREED MODEL ------------------------------
        # breed_model takes as input the image as well as the predicted segmentation map 
        #     -> we need to split up ModelImageTo3d, such that we can use the silhouette
        resnet_output = self.breed_model(img=input_img, seg_raw=last_seg)
        pred_breed = resnet_output['breeds']       # (bs, n_breeds)
        pred_betas = resnet_output['betas']
        pred_betas_limbs = resnet_output['betas_limbs']
        small_output = {'keypoints_norm': keypoints_norm,
                        'keypoints_scores': scores}
        small_output_reproj = {'betas': pred_betas,
                                'betas_limbs': pred_betas_limbs,
                                'dog_breed': pred_breed}
        return small_output, None, small_output_reproj

class ModelImageTo3d_withshape_withproj(nn.Module):
    def __init__(self, smal_model_type, smal_keyp_conf=None, arch='hg8', num_stage_comb=2, num_stage_heads=1, num_stage_heads_pose=1, trans_sep=False, n_joints=35, n_classes=20, n_partseg=15, n_keyp=20, n_bones=24, n_betas=10, n_betas_limbs=6, n_breeds=121, image_size=256, n_z=512, n_segbps=64*2, thr_keyp_sc=None, add_z_to_3d_input=True, add_segbps_to_3d_input=False, add_partseg=True, silh_no_tail=True, fix_flength=False, render_partseg=False, structure_z_to_betas='default', structure_pose_net='default', nf_version=None, ref_net_type='add', ref_detach_shape=True, graphcnn_type='inexistent', isflat_type='inexistent', shaperef_type='inexistent'):
        super(ModelImageTo3d_withshape_withproj, self).__init__()
        self.n_classes = n_classes
        self.n_partseg = n_partseg
        self.n_betas = n_betas
        self.n_betas_limbs = n_betas_limbs
        self.n_keyp = n_keyp
        self.n_joints = n_joints
        self.n_bones = n_bones
        self.n_breeds = n_breeds
        self.image_size = image_size
        self.threshold_scores = thr_keyp_sc 
        self.upsample_seg = True
        self.silh_no_tail = silh_no_tail
        self.add_z_to_3d_input = add_z_to_3d_input       
        self.add_segbps_to_3d_input = add_segbps_to_3d_input
        self.add_partseg = add_partseg
        self.ref_net_type = ref_net_type
        self.ref_detach_shape = ref_detach_shape
        self.graphcnn_type = graphcnn_type
        self.isflat_type = isflat_type
        self.shaperef_type = shaperef_type
        assert (not self.add_segbps_to_3d_input) or (not self.add_z_to_3d_input)
        self.n_z = n_z   
        if add_segbps_to_3d_input:
            self.n_segbps = n_segbps    # 64
            self.segbps_model = SegBPS()
        else:
            self.n_segbps = 0
        self.fix_flength = fix_flength
        self.render_partseg = render_partseg
        self.structure_z_to_betas = structure_z_to_betas
        self.structure_pose_net = structure_pose_net
        assert self.structure_pose_net in ['default', 'vae', 'normflow']
        self.nf_version = nf_version
        self.smal_model_type = smal_model_type
        assert (smal_keyp_conf is not None)
        self.smal_keyp_conf = smal_keyp_conf
        self.register_buffer('betas_zeros', torch.zeros((1, self.n_betas)))
        self.register_buffer('mean_dog_bone_lengths', torch.tensor(MEAN_DOG_BONE_LENGTHS_NO_RED, dtype=torch.float32))
        p_dropout = 0.2      # 0.5     
        # ------------------------------ SMAL MODEL ------------------------------
        self.smal = SMAL(smal_model_type=self.smal_model_type, template_name='neutral')     
        print('SMAL model type: ' + self.smal.smal_model_type)      
        # New for rendering without tail
        f_np = self.smal.faces.detach().cpu().numpy()
        self.f_no_tail_np = f_np[np.isin(f_np[:,:], VERTEX_IDS_TAIL).sum(axis=1)==0, :]
        # in theory we could optimize for improved shapedirs, but we do not do that
        #   -> would need to implement regularizations 
        #   -> there are better ways than changing the shapedirs
        self.model_learnable_shapedirs = LearnableShapedirs(self.smal.sym_ids_dict, self.smal.shapedirs.detach(), self.n_betas, 10)
        # ------------------------------ STACKED HOUR GLASS ------------------------------        
        if arch == 'hg8':
            self.stacked_hourglass = hg8(pretrained=False, num_classes=self.n_classes, num_partseg=self.n_partseg, upsample_seg=self.upsample_seg, add_partseg=self.add_partseg)
        else:
            raise Exception('unrecognised model architecture: ' + arch)
        # ------------------------------ SHAPE AND BREED MODEL ------------------------------
        self.breed_model = ModelShapeAndBreed(self.smal_model_type, n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_z=self.n_z, structure_z_to_betas=self.structure_z_to_betas)
        # ------------------------------ LINEAR 3D MODEL ------------------------------
        # 3d model -> from image to 3d parameters {2d keypoints from heatmap, pose, trans, flength}
        self.soft_max = torch.nn.Softmax(dim=1)
        input_size = self.n_keyp*3 + self.n_bones
        self.model_3d = LinearModelComplete(linear_size=1024,
                    num_stage_comb=num_stage_comb,
                    num_stage_heads=num_stage_heads,
                    num_stage_heads_pose=num_stage_heads_pose,
                    trans_sep=trans_sep, 
                    p_dropout=p_dropout,        # 0.5, 
                    input_size=input_size,
                    intermediate_size=1024,
                    output_info=None,
                    n_joints=self.n_joints,
                    n_z=self.n_z,
                    add_z_to_3d_input=self.add_z_to_3d_input,
                    n_segbps=self.n_segbps,
                    add_segbps_to_3d_input=self.add_segbps_to_3d_input, 
                    structure_pose_net=self.structure_pose_net,
                    nf_version = self.nf_version)
        # ------------------------------ RENDERING ------------------------------
        self.silh_renderer = SilhRenderer(image_size) 
        # ------------------------------ REFINEMENT -----------------------------
        self.refinement_model = ModelRefinement(n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_keyp=self.n_keyp, n_joints=self.n_joints, ref_net_type=self.ref_net_type, graphcnn_type=self.graphcnn_type, isflat_type=self.isflat_type, shaperef_type=self.shaperef_type)


    def forward(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
        batch_size = input_img.shape[0]
        device = input_img.device
        # ------------------------------ STACKED HOUR GLASS ------------------------------
        hourglass_out_dict = self.stacked_hourglass(input_img)
        last_seg = hourglass_out_dict['seg_final']
        last_heatmap = hourglass_out_dict['out_list_kp'][-1] 
        # - prepare keypoints (from heatmap)
        # normalize predictions -> from logits to probability distribution
        # last_heatmap_norm = dsnt.spatial_softmax2d(last_heatmap, temperature=torch.tensor(1))
        # keypoints = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=False) + 1   # (bs, 20, 2)
        # keypoints_norm = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=True)    # (bs, 20, 2)
        keypoints_norm, scores = get_preds_soft(last_heatmap, return_maxval=True, norm_coords=True)
        if self.threshold_scores is not None:
            scores[scores>self.threshold_scores] = 1.0
            scores[scores<=self.threshold_scores] = 0.0
        # ------------------------------ LEARNABLE SHAPE MODEL ------------------------------
        # in our cvpr 2022 paper we do not change the shapedirs
        # learnable_sd_complete has shape (3889, 3, n_sd)
        # learnable_sd_complete_prepared has shape (n_sd, 11667)
        learnable_sd_complete, learnable_sd_complete_prepared = self.model_learnable_shapedirs()
        shapedirs_sel = learnable_sd_complete_prepared        # None
        # ------------------------------ SHAPE AND BREED MODEL ------------------------------
        # breed_model takes as input the image as well as the predicted segmentation map 
        #     -> we need to split up ModelImageTo3d, such that we can use the silhouette
        resnet_output = self.breed_model(img=input_img, seg_raw=last_seg)
        pred_breed = resnet_output['breeds']       # (bs, n_breeds)
        pred_z = resnet_output['z']
        # - prepare shape
        pred_betas = resnet_output['betas']     
        pred_betas_limbs = resnet_output['betas_limbs'] 
        # - calculate bone lengths
        with torch.no_grad():
            use_mean_bone_lengths = False
            if use_mean_bone_lengths:
                bone_lengths_prepared = torch.cat(batch_size*[self.mean_dog_bone_lengths.reshape((1, -1))])
            else:
                assert (bone_lengths_prepared is None)
                bone_lengths_prepared = self.smal.caclulate_bone_lengths(pred_betas, pred_betas_limbs, shapedirs_sel=shapedirs_sel, short=True)
        # ------------------------------ LINEAR 3D MODEL ------------------------------
        # 3d model -> from image to 3d parameters {2d keypoints from heatmap, pose, trans, flength}
        # prepare input for 2d-to-3d network
        keypoints_prepared = torch.cat((keypoints_norm, scores), axis=2)
        if bone_lengths_prepared is None:
            bone_lengths_prepared = torch.cat(batch_size*[self.mean_dog_bone_lengths.reshape((1, -1))])
        # should we add silhouette to 3d input? should we add z?
        if self.add_segbps_to_3d_input:
            seg_raw = last_seg
            seg_prep_bps = self.soft_max(seg_raw)[:, 1, :, :] # class 1 is the dog
            with torch.no_grad():
                seg_prep_np = seg_prep_bps.detach().cpu().numpy()
                bps_output_np = self.segbps_model.calculate_bps_points_batch(seg_prep_np)  # (bs, 64, 2)
                bps_output = torch.tensor(bps_output_np, dtype=torch.float32).to(device).reshape((batch_size, -1))
                bps_output_prep = bps_output * 2. - 1
            input_vec_keyp_bones = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)  
            input_vec = torch.cat((input_vec_keyp_bones, bps_output_prep), dim=1)
        elif self.add_z_to_3d_input:
            # we do not use this in our cvpr 2022 version
            input_vec_keyp_bones = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)  
            input_vec_additional = pred_z       
            input_vec = torch.cat((input_vec_keyp_bones, input_vec_additional), dim=1)
        else:
            input_vec = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)  
        # predict 3d parameters (those are normalized, we need to correct mean and std in a next step)
        output = self.model_3d(input_vec)      
        # add predicted keypoints to the output dict
        output['keypoints_norm'] = keypoints_norm
        output['keypoints_scores'] = scores
        # add predicted segmentation to output dictc
        output['seg_hg'] = hourglass_out_dict['seg_final']
        # - denormalize 3d parameters -> so far predictions were normalized, now we denormalize them again
        pred_trans = output['trans'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :]    # (bs, 3)
        if  self.structure_pose_net == 'default':
            pred_pose_rot6d = output['pose'] + norm_dict['pose_rot6d_mean'][None, :]
        elif self.structure_pose_net == 'normflow':
            pose_rot6d_mean_zeros = torch.zeros_like(norm_dict['pose_rot6d_mean'][None, :])
            pose_rot6d_mean_zeros[:, 0, :] = norm_dict['pose_rot6d_mean'][None, 0, :]
            pred_pose_rot6d = output['pose'] + pose_rot6d_mean_zeros
        else:
            pose_rot6d_mean_zeros = torch.zeros_like(norm_dict['pose_rot6d_mean'][None, :])
            pose_rot6d_mean_zeros[:, 0, :] = norm_dict['pose_rot6d_mean'][None, 0, :]
            pred_pose_rot6d = output['pose'] + pose_rot6d_mean_zeros
        pred_pose_reshx33 = rot6d_to_rotmat(pred_pose_rot6d.reshape((-1, 6)))
        pred_pose = pred_pose_reshx33.reshape((batch_size, -1, 3, 3))
        pred_pose_rot6d = rotmat_to_rot6d(pred_pose_reshx33).reshape((batch_size, -1, 6))

        if self.fix_flength:
            output['flength'] = torch.zeros_like(output['flength'])
            pred_flength = torch.ones_like(output['flength'])*2100  # norm_dict['flength_mean'][None, :]
        else:
            pred_flength_orig = output['flength'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :]   # (bs, 1)
            pred_flength = pred_flength_orig.clone()  # torch.abs(pred_flength_orig)
            pred_flength[pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]

        # ------------------------------ RENDERING ------------------------------
        # get 3d model (SMAL)
        V, keyp_green_3d, _ = self.smal(beta=pred_betas, betas_limbs=pred_betas_limbs, pose=pred_pose, trans=pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf, shapedirs_sel=shapedirs_sel)
        keyp_3d = keyp_green_3d[:, :self.n_keyp, :]     # (bs, 20, 3)
        # render silhouette
        faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
        if not self.silh_no_tail:
            pred_silh_images, pred_keyp = self.silh_renderer(vertices=V, 
                points=keyp_3d, faces=faces_prep, focal_lengths=pred_flength)
        else:
            faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
            pred_silh_images, pred_keyp = self.silh_renderer(vertices=V, 
                points=keyp_3d, faces=faces_no_tail_prep, focal_lengths=pred_flength)
        # get torch 'Meshes'
        torch_meshes = self.silh_renderer.get_torch_meshes(vertices=V, faces=faces_prep) 

        #  render body parts (not part of cvpr 2022 version)
        if self.render_partseg:
            raise NotImplementedError
        else:
            partseg_images = None
            partseg_images_hg = None


        # ------------------------------ REFINEMENT MODEL ------------------------------

        # refinement model
        pred_keyp_norm = (pred_keyp.detach() / (self.image_size - 1) - 0.5)*2
        '''output_ref = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, \
                            seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, \
                            in_pose=output['pose'].detach(), in_trans=output['trans'].detach(), in_cam=output['flength'].detach(), in_betas=pred_betas.detach())'''
        output_ref = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, \
                            seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, \
                            in_pose_3x3=pred_pose.detach(), in_trans_notnorm=output['trans'].detach(), in_cam_notnorm=output['flength'].detach(), in_betas=pred_betas.detach(), in_betas_limbs=pred_betas_limbs.detach())
        # a better alternative would be to submit pred_pose_reshx33



        # nothing changes for betas or shapedirs or z       ##################### should probably not be detached in the end
        if self.shaperef_type == 'inexistent':
            if self.ref_detach_shape:
                output_ref['betas'] = pred_betas.detach()
                output_ref['betas_limbs'] = pred_betas_limbs.detach()
                output_ref['z'] = pred_z.detach()
                output_ref['shapedirs'] = shapedirs_sel.detach()
            else:
                output_ref['betas'] = pred_betas
                output_ref['betas_limbs'] = pred_betas_limbs
                output_ref['z'] = pred_z
                output_ref['shapedirs'] = shapedirs_sel
        else:
            assert ('betas' in output_ref.keys())
            assert ('betas_limbs' in output_ref.keys())
            output_ref['shapedirs'] = shapedirs_sel     


        # we denormalize flength and trans, but pose is handled differently
        if self.fix_flength:
            output_ref['flength_notnorm'] = torch.zeros_like(output['flength'])
            ref_pred_flength = torch.ones_like(output['flength_notnorm'])*2100  # norm_dict['flength_mean'][None, :]
            raise ValueError    # not sure if we want to have a fixed flength in refinement
        else:
            ref_pred_flength_orig = output_ref['flength_notnorm'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :]   # (bs, 1)
            ref_pred_flength = ref_pred_flength_orig.clone()  # torch.abs(pred_flength_orig)
            ref_pred_flength[ref_pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]
        ref_pred_trans = output_ref['trans_notnorm'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :]    # (bs, 3)




        # ref_pred_pose_rot6d = output_ref['pose']
        # ref_pred_pose_reshx33 = rot6d_to_rotmat(output_ref['pose'].reshape((-1, 6))).reshape((batch_size, -1, 3, 3))
        ref_pred_pose_reshx33 = output_ref['pose_rotmat'].reshape((batch_size, -1, 3, 3))
        ref_pred_pose_rot6d = rotmat_to_rot6d(ref_pred_pose_reshx33.reshape((-1, 3, 3))).reshape((batch_size, -1, 6))

        ref_V, ref_keyp_green_3d, _ = self.smal(beta=output_ref['betas'], betas_limbs=output_ref['betas_limbs'], 
                                        pose=ref_pred_pose_reshx33, trans=ref_pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf, 
                                        shapedirs_sel=output_ref['shapedirs'])
        ref_keyp_3d = ref_keyp_green_3d[:, :self.n_keyp, :]     # (bs, 20, 3)

        if not self.silh_no_tail:
            faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
            ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V, 
                points=ref_keyp_3d, faces=faces_prep, focal_lengths=ref_pred_flength)
        else:
            faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
            ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V, 
                points=ref_keyp_3d, faces=faces_no_tail_prep, focal_lengths=ref_pred_flength)

        output_ref_unnorm = {'vertices_smal': ref_V,
                            'keyp_3d': ref_keyp_3d,
                            'keyp_2d': ref_pred_keyp,
                            'silh': ref_pred_silh_images,
                            'trans': ref_pred_trans,
                            'flength': ref_pred_flength,
                            'betas': output_ref['betas'],
                            'betas_limbs': output_ref['betas_limbs'],
                            # 'z': output_ref['z'],
                            'pose_rot6d': ref_pred_pose_rot6d,   
                            'pose_rotmat':  ref_pred_pose_reshx33} 
                            # 'shapedirs': shapedirs_sel}

        if not self.graphcnn_type == 'inexistent':
            output_ref_unnorm['vertexwise_ground_contact'] = output_ref['vertexwise_ground_contact']
        if not self.isflat_type=='inexistent':
            output_ref_unnorm['isflat'] = output_ref['isflat']
        if self.shaperef_type == 'inexistent':
            output_ref_unnorm['z'] = output_ref['z']

        # REMARK: we will want to have the predicted differences, for pose this would 
        #   be a rotation matrix, ...
        #       -> TODO: adjust output_orig_ref_comparison
        output_orig_ref_comparison = {#'pose': output['pose'].detach(),
                                    #'trans': output['trans'].detach(),
                                    #'flength': output['flength'].detach(),
                                    # 'pose': output['pose'],
                                    'old_pose_rotmat': pred_pose_reshx33,
                                    'old_trans_notnorm': output['trans'],
                                    'old_flength_notnorm': output['flength'],
                                    # 'ref_pose': output_ref['pose'],
                                    'ref_pose_rotmat': ref_pred_pose_reshx33,
                                    'ref_trans_notnorm': output_ref['trans_notnorm'],
                                    'ref_flength_notnorm': output_ref['flength_notnorm']}



        # ------------------------------ PREPARE OUTPUT ------------------------------
        # create output dictionarys
        # output: contains all output from model_image_to_3d
        # output_unnorm: same as output, but normalizations are undone
        # output_reproj: smal output and reprojected keypoints as well as silhouette 
        keypoints_heatmap_256 = (output['keypoints_norm'] / 2. + 0.5) * (self.image_size - 1)
        output_unnorm = {'pose_rotmat': pred_pose,
                        'flength': pred_flength,
                        'trans': pred_trans,
                        'keypoints':keypoints_heatmap_256}
        output_reproj = {'vertices_smal': V,
                        'torch_meshes': torch_meshes,
                        'keyp_3d': keyp_3d,
                        'keyp_2d': pred_keyp,
                        'silh': pred_silh_images,
                        'betas': pred_betas,
                        'betas_limbs': pred_betas_limbs,
                        'pose_rot6d': pred_pose_rot6d,       # used for pose prior...
                        'dog_breed': pred_breed,
                        'shapedirs': shapedirs_sel,
                        'z': pred_z,
                        'flength_unnorm': pred_flength,
                        'flength': output['flength'],
                        'partseg_images_rend': partseg_images,
                        'partseg_images_hg_nograd': partseg_images_hg,
                        'normflow_z': output['normflow_z']}

        return output, output_unnorm, output_reproj, output_ref_unnorm, output_orig_ref_comparison


    def forward_with_multiple_refinements(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
        
        # import pdb; pdb.set_trace()

        # run normal network part
        output, output_unnorm, output_reproj, output_ref_unnorm, output_orig_ref_comparison = self.forward(input_img, norm_dict=norm_dict, bone_lengths_prepared=bone_lengths_prepared, betas=betas)

        # prepare input for second refinement stage
        batch_size = output['keypoints_norm'].shape[0]
        keypoints_norm = output['keypoints_norm']
        pred_keyp_norm = (output_ref_unnorm['keyp_2d'].detach() / (self.image_size - 1) - 0.5)*2

        last_seg = output['seg_hg']
        pred_silh_images = output_ref_unnorm['silh'].detach() 

        trans_notnorm = output_orig_ref_comparison['ref_trans_notnorm']
        flength_notnorm = output_orig_ref_comparison['ref_flength_notnorm']
        # trans_notnorm = output_orig_ref_comparison['ref_pose_rotmat']
        pred_pose = output_ref_unnorm['pose_rotmat'].reshape((batch_size, -1, 3, 3))

        # run second refinement step
        output_ref_new = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, \
                            seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, \
                            in_pose_3x3=pred_pose.detach(), in_trans_notnorm=trans_notnorm.detach(), in_cam_notnorm=flength_notnorm.detach(), \
                            in_betas=output_ref_unnorm['betas'].detach(), in_betas_limbs=output_ref_unnorm['betas_limbs'].detach()) 
        # output_ref_new = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, in_pose_3x3=pred_pose.detach(), in_trans_notnorm=trans_notnorm.detach(), in_cam_notnorm=flength_notnorm.detach(), in_betas=output_ref_unnorm['betas'].detach(), in_betas_limbs=output_ref_unnorm['betas_limbs'].detach()) 


        # new shape
        if self.shaperef_type == 'inexistent':
            if self.ref_detach_shape:
                output_ref_new['betas'] = output_ref_unnorm['betas'].detach()
                output_ref_new['betas_limbs'] = output_ref_unnorm['betas_limbs'].detach()
                output_ref_new['z'] = output_ref_unnorm['z'].detach()
                output_ref_new['shapedirs'] = output_reproj['shapedirs'].detach()
            else:
                output_ref_new['betas'] = output_ref_unnorm['betas']
                output_ref_new['betas_limbs'] = output_ref_unnorm['betas_limbs']
                output_ref_new['z'] = output_ref_unnorm['z']
                output_ref_new['shapedirs'] = output_reproj['shapedirs']
        else:
            assert ('betas' in output_ref_new.keys())
            assert ('betas_limbs' in output_ref_new.keys())
            output_ref_new['shapedirs'] = output_reproj['shapedirs']    

        # we denormalize flength and trans, but pose is handled differently
        if self.fix_flength:
            raise ValueError    # not sure if we want to have a fixed flength in refinement
        else:
            ref_pred_flength_orig = output_ref_new['flength_notnorm'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :]   # (bs, 1)
            ref_pred_flength = ref_pred_flength_orig.clone()  # torch.abs(pred_flength_orig)
            ref_pred_flength[ref_pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]
        ref_pred_trans = output_ref_new['trans_notnorm'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :]    # (bs, 3)


        ref_pred_pose_reshx33 = output_ref_new['pose_rotmat'].reshape((batch_size, -1, 3, 3))
        ref_pred_pose_rot6d = rotmat_to_rot6d(ref_pred_pose_reshx33.reshape((-1, 3, 3))).reshape((batch_size, -1, 6))

        ref_V, ref_keyp_green_3d, _ = self.smal(beta=output_ref_new['betas'], betas_limbs=output_ref_new['betas_limbs'], 
                                        pose=ref_pred_pose_reshx33, trans=ref_pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf, 
                                        shapedirs_sel=output_ref_new['shapedirs'])

        # ref_V, ref_keyp_green_3d, _ = self.smal(beta=output_ref_new['betas'], betas_limbs=output_ref_new['betas_limbs'], pose=ref_pred_pose_reshx33, trans=ref_pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf, shapedirs_sel=output_ref_new['shapedirs'])
        ref_keyp_3d = ref_keyp_green_3d[:, :self.n_keyp, :]     # (bs, 20, 3)

        if not self.silh_no_tail:
            faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
            ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V, 
                points=ref_keyp_3d, faces=faces_prep, focal_lengths=ref_pred_flength)
        else:
            faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
            ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V, 
                points=ref_keyp_3d, faces=faces_no_tail_prep, focal_lengths=ref_pred_flength)

        output_ref_unnorm_new = {'vertices_smal': ref_V,
                            'keyp_3d': ref_keyp_3d,
                            'keyp_2d': ref_pred_keyp,
                            'silh': ref_pred_silh_images,
                            'trans': ref_pred_trans,
                            'flength': ref_pred_flength,
                            'betas': output_ref_new['betas'],
                            'betas_limbs': output_ref_new['betas_limbs'],
                            'pose_rot6d': ref_pred_pose_rot6d,   
                            'pose_rotmat':  ref_pred_pose_reshx33} 

        if not self.graphcnn_type == 'inexistent':
            output_ref_unnorm_new['vertexwise_ground_contact'] = output_ref_new['vertexwise_ground_contact']
        if not self.isflat_type=='inexistent':
            output_ref_unnorm_new['isflat'] = output_ref_new['isflat']
        if self.shaperef_type == 'inexistent':
            output_ref_unnorm_new['z'] = output_ref_new['z']

        output_orig_ref_comparison_new = {'ref_pose_rotmat': ref_pred_pose_reshx33,
                                    'ref_trans_notnorm': output_ref_new['trans_notnorm'],
                                    'ref_flength_notnorm': output_ref_new['flength_notnorm']}

        results = {
            'output': output, 
            'output_unnorm': output_unnorm, 
            'output_reproj':output_reproj, 
            'output_ref_unnorm': output_ref_unnorm, 
            'output_orig_ref_comparison':output_orig_ref_comparison,
            'output_ref_unnorm_new': output_ref_unnorm_new, 
            'output_orig_ref_comparison_new': output_orig_ref_comparison_new}
        return results





















    def render_vis_nograd(self, vertices, focal_lengths, color=0):
        # this function is for visualization only
        # vertices: (bs, n_verts, 3)
        # focal_lengths: (bs, 1)
        # color: integer, either 0 or 1
        # returns a torch tensor of shape (bs, image_size, image_size, 3)
        with torch.no_grad():
            batch_size = vertices.shape[0]
            faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
            visualizations = self.silh_renderer.get_visualization_nograd(vertices, 
                faces_prep, focal_lengths, color=color)
        return visualizations