File size: 9,144 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

import torch
import numpy as np


'''
def keyp_rep_error_l1(smpl_keyp_2d, keyp_hourglass, keyp_hourglass_scores, thr_kp=0.3):
    # step 1: make sure that the hg prediction and barc are close
    with torch.no_grad():
        kp_weights = keyp_hourglass_scores
        kp_weights[keyp_hourglass_scores<thr_kp] = 0
    loss_keyp_rep = torch.mean((torch.abs((smpl_keyp_2d - keyp_hourglass)/512)).sum(dim=2)*kp_weights[:, :, 0])
    return loss_keyp_rep

def keyp_rep_error(smpl_keyp_2d, keyp_hourglass, keyp_hourglass_scores, thr_kp=0.3):
    # step 1: make sure that the hg prediction and barc are close
    with torch.no_grad():
        kp_weights = keyp_hourglass_scores
        kp_weights[keyp_hourglass_scores<thr_kp] = 0
    # losses['kp_reproj']['value'] = torch.mean((((smpl_keyp_2d - keyp_reproj_init)/512)**2).sum(dim=2)*kp_weights[:, :, 0])
    loss_keyp_rep = torch.mean((((smpl_keyp_2d - keyp_hourglass)/512)**2).sum(dim=2)*kp_weights[:, :, 0])
    return loss_keyp_rep
'''

def leg_sideway_error(optimed_pose_with_glob):
    assert optimed_pose_with_glob.shape[1] == 35
    leg_indices_right = np.asarray([7, 8, 9, 10, 17, 18, 19, 20])      # front, back
    leg_indices_left = np.asarray([11, 12, 13, 14, 21, 22, 23, 24])     # front, back
    # leg_indices_right = np.asarray([8, 9, 10, 18, 19, 20])      # front, back
    # leg_indices_left = np.asarray([12, 13, 14, 22, 23, 24])     # front, back
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_legs_left = x0_rotmat[:, leg_indices_left, :, :]
    x0_rotmat_legs_right = x0_rotmat[:, leg_indices_right, :, :]
    vec = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    vec[2] = -1
    x0_legs_left = x0_rotmat_legs_left.reshape((-1, 3, 3))@vec
    x0_legs_right = x0_rotmat_legs_right.reshape((-1, 3, 3))@vec
    loss_pose_legs_side = (x0_legs_left[:, 1]**2).mean() + (x0_legs_right[:, 1]**2).mean()
    return loss_pose_legs_side


def leg_torsion_error(optimed_pose_with_glob):
    leg_indices_right = np.asarray([7, 8, 9, 10, 17, 18, 19, 20])      # front, back
    leg_indices_left = np.asarray([11, 12, 13, 14, 21, 22, 23, 24])     # front, back
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_legs_left = x0_rotmat[:, leg_indices_left, :, :]
    x0_rotmat_legs_right = x0_rotmat[:, leg_indices_right, :, :]
    vec_x = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    vec_x[0] = 1      # in x direction
    x_x_legs_left = x0_rotmat_legs_left.reshape((-1, 3, 3))@vec_x
    x_x_legs_right = x0_rotmat_legs_right.reshape((-1, 3, 3))@vec_x
    loss_pose_legs_torsion = (x_x_legs_left[:, 1]**2).mean() + (x_x_legs_right[:, 1]**2).mean()
    return loss_pose_legs_torsion


def frontleg_walkingdir_error(optimed_pose_with_glob):
    # this prior should only be used for standing poses!
    leg_indices_right = np.asarray([7, 8, 9, 10])      # front, back
    leg_indices_left = np.asarray([11, 12, 13, 14])     # front, back
    relevant_back_indices = np.asarray([1, 2, 3, 4, 5, 6])      # np.asarray([6])             # back joint in the front
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_legs_left = x0_rotmat[:, leg_indices_left, :, :]
    x0_rotmat_legs_right = x0_rotmat[:, leg_indices_right, :, :]
    x0_rotmat_back = x0_rotmat[:, relevant_back_indices, :, :]
    vec = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    vec[2] = -1     # vector down
    x0_legs_left = x0_rotmat_legs_left.reshape((-1, 3, 3))@vec
    x0_legs_right = x0_rotmat_legs_right.reshape((-1, 3, 3))@vec
    x0_back = x0_rotmat_back.reshape((-1, 3, 3))@vec
    loss_pose_legs_side = (x0_legs_left[:, 0]**2).mean() + (x0_legs_right[:, 0]**2).mean() + (x0_back[:, 0]**2).mean()  # penalize movement to front
    return loss_pose_legs_side


def tail_sideway_error(optimed_pose_with_glob):
    tail_indices = np.asarray([25, 26, 27, 28, 29, 30, 31])      
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_tail = x0_rotmat[:, tail_indices, :, :]
    vec = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    '''vec[2] = -1    
    x0_tail = x0_rotmat_tail.reshape((-1, 3, 3))@vec
    loss_pose_tail_side = (x0_tail[:, 1]**2).mean()'''
    vec[0] = -1    
    x0_tail = x0_rotmat_tail.reshape((-1, 3, 3))@vec
    loss_pose_tail_side = (x0_tail[:, 1]**2).mean()
    return loss_pose_tail_side


def tail_torsion_error(optimed_pose_with_glob):
    tail_indices = np.asarray([25, 26, 27, 28, 29, 30, 31])      
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_tail = x0_rotmat[:, tail_indices, :, :]
    vec_x = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    '''vec_x[0] = 1      # in x direction
    x_x_tail = x0_rotmat_tail.reshape((-1, 3, 3))@vec_x
    loss_pose_tail_torsion = (x_x_tail[:, 1]**2).mean()'''
    vec_x[2] = 1      # in y direction
    x_x_tail = x0_rotmat_tail.reshape((-1, 3, 3))@vec_x
    loss_pose_tail_torsion = (x_x_tail[:, 1]**2).mean()
    return loss_pose_tail_torsion


def spine_sideway_error(optimed_pose_with_glob):
    tail_indices = np.asarray([1, 2, 3, 4, 5, 6])   # was wrong      
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_tail = x0_rotmat[:, tail_indices, :, :]
    vec = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    vec[0] = -1    
    x0_tail = x0_rotmat_tail.reshape((-1, 3, 3))@vec
    loss_pose_tail_side = (x0_tail[:, 1]**2).mean()
    return loss_pose_tail_side


def spine_torsion_error(optimed_pose_with_glob):
    tail_indices = np.asarray([1, 2, 3, 4, 5, 6])      
    x0_rotmat = optimed_pose_with_glob   # (1, 35, 3, 3)
    x0_rotmat_tail = x0_rotmat[:, tail_indices, :, :]
    vec_x = torch.zeros((3, 1)).to(device=optimed_pose_with_glob.device, dtype=optimed_pose_with_glob.dtype)
    vec_x[2] = 1    # vec_x[0] = 1      # in z direction
    x_x_tail = x0_rotmat_tail.reshape((-1, 3, 3))@vec_x
    loss_pose_tail_torsion = (x_x_tail[:, 1]**2).mean()     # (x_x_tail[:, 1]**2).mean()
    return loss_pose_tail_torsion


def fit_plane(points_npx3):
    # remarks:
    #   visualization of the plane: debug_code/curve_fitting_v2.py
    #   theory: https://www.ltu.se/cms_fs/1.51590!/svd-fitting.pdf
    #   remark: torch.svd is depreciated
    # new plane equation:
    #   a(x−x0)+b(y−y0)+c(z−z0)=0
    #   ax+by+cz=d with  d=ax0+by0+cz0
    #   z = (d-ax-by)/c
    #   here:
    #   a, b, c describe the plane normal 
    #   d can be calculated (from a, b, c, x0, y0, z0)
    #   (x0, y0, z0) are the coordinates of a point on the 
    #     plane, for example points_centroid
    #   (x, y, z) are the coordinates of a query point on the plane 
    # 
    # points_npx3: (n_points, 3) 
    # REMARK: this loss is not yet for batches!
    # import pdb; pdb.set_trace()
    # print('this loss is not yet for batches!')
    assert (points_npx3.ndim == 2)
    assert (points_npx3.shape[1] == 3)
    points = torch.transpose(points_npx3, 0, 1)       # (3, n_points)
    points_centroid = torch.mean(points, dim=1)
    input_svd = points - points_centroid[:, None] 
    U_svd, sigma_svd, V_svd = torch.svd(input_svd, compute_uv=True)
    plane_normal = U_svd[:, 2]
    plane_squaredsumofdists = sigma_svd[2]
    error = plane_squaredsumofdists
    return points_centroid, plane_normal, error


def paws_to_groundplane_error(vertices, return_details=False):
    # list of feet vertices (some of them)
    #   remark: we did annotate left indices and find the right insices using sym_ids_dict
    # REMARK: this loss is not yet for batches!
    # import pdb; pdb.set_trace()
    # print('this loss is not yet for batches!')
    list_back_left = [1524, 1517, 1512, 1671, 1678, 1664, 1956, 1680, 1685, 1602, 1953, 1569]
    list_front_left = [1331, 1327, 1332, 1764, 1767, 1747, 1779, 1789, 1944, 1339, 1323, 1420]
    list_back_right = [3476, 3469, 3464, 3623, 3630, 3616, 3838, 3632, 3637, 3554, 3835, 3521]
    list_front_right = [3283, 3279, 3284, 3715, 3718, 3698, 3730, 3740, 3826, 3291, 3275, 3372]
    assert vertices.shape[0] == 3889
    assert vertices.shape[1] == 3
    all_paw_vert_idxs = list_back_left + list_front_left + list_back_right + list_front_right
    verts_paws = vertices[all_paw_vert_idxs, :]
    plane_centroid, plane_normal, error = fit_plane(verts_paws)
    if return_details:
        return plane_centroid, plane_normal, error
    else:
        return error

def groundcontact_error(vertices, gclabels, return_details=False):
    # import pdb; pdb.set_trace()
    # REMARK: this loss is not yet for batches!
    import pdb; pdb.set_trace()
    print('this loss is not yet for batches!')
    assert vertices.shape[0] == 3889
    assert vertices.shape[1] == 3
    verts_gc = vertices[gclabels, :]
    plane_centroid, plane_normal, error = fit_plane(verts_gc)
    if return_details:
        return plane_centroid, plane_normal, error
    else:
        return error