Spaces:
Runtime error
Runtime error
removed duplicate
Browse files- public_app.py +0 -83
public_app.py
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
import logging
|
| 2 |
-
|
| 3 |
-
from langchain import PromptTemplate, LLMChain
|
| 4 |
-
from langchain.chains.question_answering import load_qa_chain
|
| 5 |
-
from langchain.vectorstores import FAISS
|
| 6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
-
from langchain.chat_models import ChatOpenAI
|
| 8 |
-
import gradio as gr
|
| 9 |
-
import json
|
| 10 |
-
|
| 11 |
-
from prompts import PROMPT_EXTRACT_DATE, PROMPT_FED_ANALYST
|
| 12 |
-
from filterminutes import search_with_filter
|
| 13 |
-
|
| 14 |
-
# --------------------------Load the sentence transformer and the vector store--------------------------#
|
| 15 |
-
model_name = 'sentence-transformers/all-mpnet-base-v2'
|
| 16 |
-
model_kwargs = {'device': 'cpu'}
|
| 17 |
-
encode_kwargs = {'normalize_embeddings': False}
|
| 18 |
-
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)
|
| 19 |
-
vs = FAISS.load_local("MINUTES_FOMC_HISTORY", embeddings)
|
| 20 |
-
|
| 21 |
-
# --------------------------Import the prompts------------------#
|
| 22 |
-
PROMPT_DATE = PromptTemplate.from_template(PROMPT_EXTRACT_DATE)
|
| 23 |
-
PROMPT_ANALYST = PromptTemplate.from_template(PROMPT_FED_ANALYST)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# --------------------------define the qa chain for answering queries--------------------------#
|
| 27 |
-
def load_chains(open_ai_key):
|
| 28 |
-
date_extractor = LLMChain(llm=ChatOpenAI(temperature=0, model_name='gpt-3.5-turbo', openai_api_key=open_ai_key),
|
| 29 |
-
prompt=PROMPT_DATE)
|
| 30 |
-
fed_chain = load_qa_chain(llm=ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, openai_api_key=open_ai_key),
|
| 31 |
-
chain_type='stuff', prompt=PROMPT_ANALYST)
|
| 32 |
-
return date_extractor, fed_chain
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def get_chain(query, api_key):
|
| 36 |
-
"""
|
| 37 |
-
Detects the date, computes similarity, and answers the query using
|
| 38 |
-
only documents corresponding to the date requested.
|
| 39 |
-
The query is first passed to the date extractor to extract the date
|
| 40 |
-
and then to the qa chain to answer the query.
|
| 41 |
-
Parameters
|
| 42 |
-
----------
|
| 43 |
-
query : str
|
| 44 |
-
Query to be answered.
|
| 45 |
-
api_key : str
|
| 46 |
-
OpenAI API key.
|
| 47 |
-
|
| 48 |
-
Returns
|
| 49 |
-
Answer to the query.
|
| 50 |
-
"""
|
| 51 |
-
date_extractor, fed_chain = load_chains(api_key)
|
| 52 |
-
logging.info('Extracting the date in numeric format..')
|
| 53 |
-
date_response = date_extractor.run(query)
|
| 54 |
-
if date_response != 'False':
|
| 55 |
-
filter_date = json.loads(date_response)
|
| 56 |
-
|
| 57 |
-
logging.info(f'Date parameters retrieved: {filter_date}')
|
| 58 |
-
logging.info('Running the qa with filtered context..')
|
| 59 |
-
filtered_context = search_with_filter(vs, query, init_k=200, step=300, target_k=7, filter_dict=filter_date)
|
| 60 |
-
|
| 61 |
-
logging.info(20 * '-' + 'Metadata for the documents to be used' + 20 * '-')
|
| 62 |
-
for doc in filtered_context:
|
| 63 |
-
logging.info(doc.metadata)
|
| 64 |
-
else:
|
| 65 |
-
logging.info('No date elements found. Running the qa without filtering can output incorrect results.')
|
| 66 |
-
filtered_context = vs.similarity_search(query, k=7)
|
| 67 |
-
return fed_chain({'input_documents': filtered_context[:7], 'question': query})['output_text']
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
if __name__ == '__main__':
|
| 71 |
-
app = gr.Interface(fn=get_chain,
|
| 72 |
-
inputs=[gr.Textbox(lines=2, placeholder="Enter your query", label='Your query'),
|
| 73 |
-
gr.Textbox(lines=1, placeholder="Your OpenAI API key here", label='OpenAI Key')],
|
| 74 |
-
description='Query the public database in FRED from 1936-2023',
|
| 75 |
-
outputs=gr.Textbox(lines=1, label='Answer'),
|
| 76 |
-
title='Chat with the FOMC meeting minutes',
|
| 77 |
-
examples=[['What was the economic outlook from the staff presented in the meeting '
|
| 78 |
-
'of April 2009 with respect to labour market developments and industrial production?'],
|
| 79 |
-
['Who were the voting members present in the meeting on March 2010?'],
|
| 80 |
-
['How important was the pandemic of Covid-19 in the discussions during 2020?'],
|
| 81 |
-
['What was the impact of the oil crisis for the economic outlook during 1973?']],
|
| 82 |
-
)
|
| 83 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|