# prompt: gradio image 分类 import fastai from fastai.vision import * from fastai.vision.learner import load_learner from PIL import Image import gradio as gr # Load the model model = load_learner("model.pkl") # Define an image classification function def classify_image(image): # Preprocess the image image = Image.create(image).resize((192, 192)) # Make a prediction prediction = model.predict(image)[0] # Return the prediction return {prediction: 1.0} # Create the Gradio interface image_input = gr.Image() label_output = gr.Label(num_top_classes=3) interface = gr.Interface(fn=classify_image, inputs=image_input, outputs=label_output) # Launch the interface interface.launch()