Spaces:
Runtime error
Runtime error
File size: 1,612 Bytes
549f7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from gradio_rerun import Rerun
example = Rerun().example_value()
def predict(url: str, file_path: str | list[str] | None):
if url:
return url
return file_path
with gr.Blocks(css=".gradio-container { max-width: unset!important; }") as demo:
with gr.Row():
with gr.Column():
with gr.Group():
file_path = gr.File(file_count="multiple", type="filepath")
url = gr.Text(
info="Or use a URL",
label="URL",
)
with gr.Column():
pass
btn = gr.Button("Run", scale=0)
with gr.Row():
rerun_viewer = Rerun(height=900)
inputs = [file_path, url]
outputs = [rerun_viewer]
gr.on([btn.click, file_path.upload], fn=predict, inputs=inputs, outputs=outputs)
gr.Examples(
examples=[
[
None,
"https://app.rerun.io/version/0.15.1/examples/detect_and_track_objects.rrd",
],
[
["./examples/rgbd.rrd"],
None,
],
[
["./examples/rrt-star.rrd"],
None,
],
[
["./examples/structure_from_motion.rrd"],
None,
],
[
["./examples/structure_from_motion.rrd", "./examples/rrt-star.rrd"],
None,
],
],
fn=predict,
inputs=inputs,
outputs=outputs,
run_on_click=True,
)
if __name__ == "__main__":
demo.launch()
|