File size: 6,375 Bytes
7d61c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import torch
import matplotlib.pyplot as plt
from streamlit_image_coordinates import streamlit_image_coordinates
import streamlit as st
from PIL import Image
from transformers import SamModel, SamProcessor
import cv2



# Define global constants
MAX_WIDTH = 700



# Define helpful functions
def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)

    img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
    img[:,:,3] = 0
    for ann in sorted_anns:
        m = ann['segmentation']
        color_mask = np.concatenate([np.random.random(3), [0.35]])
        img[m] = color_mask
    ax.imshow(img)

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)
    
def show_points(coords, labels, ax, marker_size=20):
    pos_points = coords[labels==1]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='.', s=marker_size, edgecolor='white', linewidth=0.2)

def show_masks_on_image(raw_image, masks, scores):
    if len(masks.shape) == 4:
      masks = masks.squeeze()
    if scores.shape[0] == 1:
      scores = scores.squeeze()

    nb_predictions = scores.shape[-1]
    fig, ax = plt.subplots(1, nb_predictions)

    for i, (mask, score) in enumerate(zip(masks, scores)):
      mask = mask.cpu().detach()
      ax[i].imshow(np.array(raw_image))
      show_mask(mask, ax[i])
      ax[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
      ax[i].axis("off")

def show_points_on_image(raw_image, input_point, ax, input_labels=None):
    ax.imshow(raw_image)
    input_point = np.array(input_point)
    if input_labels is None:
      labels = np.ones_like(input_point[:, 0])
    else:
      labels = np.array(input_labels)
    show_points(input_point, labels, ax)
    ax.axis('on')




# Get SAM
if torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")



# Get uploaded files from user
scale = st.file_uploader('Upload Scale Image')
image = st.file_uploader('Upload Particle Image')



# Runs when scale image is uploaded
if scale:
    scale_np = np.asarray(bytearray(scale.read()), dtype=np.uint8)
    scale_np = cv2.imdecode(scale_np, 1)

    #inputs = processor(raw_image, return_tensors="pt").to(device)
    inputs = processor(scale_np, return_tensors="pt").to(device)
    image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
    
    scale_factor = scale_np.shape[1] / MAX_WIDTH # how many times larger scale_np is than the image shown for each dimension
    clicked_point = streamlit_image_coordinates(Image.open(scale.name), height=scale_np.shape[0] // scale_factor, width=MAX_WIDTH)
    if clicked_point:
        input_point_np = np.array([[clicked_point['x'], clicked_point['y']]]) * scale_factor
        input_point_list = [input_point_np.astype(int).tolist()]

        #inputs = processor(raw_image, input_points=input_point, return_tensors="pt").to(device)
        inputs = processor(scale_np, input_points=input_point_list, return_tensors="pt").to(device)
        inputs.pop("pixel_values", None)
        inputs.update({"image_embeddings": image_embeddings})
        with torch.no_grad():
            outputs = model(**inputs)
        masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
        mask = torch.squeeze(masks[0])[0] # mask.shape: (1,x,y) --> (x,y)

        mask = mask.to(torch.int)
        input_label = np.array([1])

        fig, ax = plt.subplots()
        ax.imshow(scale_np)
        show_mask(mask, ax)
        #show_points_on_image(scale_np, input_point, input_label, ax)
        show_points(input_point_np, input_label, ax)
        ax.axis('off')
        st.pyplot(fig)



        # Get pixels per millimeter
        pixels_per_unit = torch.sum(mask, axis=1)
        pixels_per_unit = pixels_per_unit[pixels_per_unit > 0]
        pixels_per_unit = torch.mean(pixels_per_unit, dtype=torch.float).item()



# Runs when image is uploaded
if image:
    image_np = np.asarray(bytearray(image.read()), dtype=np.uint8)
    image_np = cv2.imdecode(image_np, 1)

    #inputs = processor(raw_image, return_tensors="pt").to(device)
    inputs = processor(image_np, return_tensors="pt").to(device)
    image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
    
    scale_factor = image_np.shape[1] / MAX_WIDTH # how many times larger scale_np is than the image shown for each dimension
    clicked_point = streamlit_image_coordinates(Image.open(image.name), height=image_np.shape[0] // scale_factor, width=MAX_WIDTH)
    if clicked_point:
        input_point_np = np.array([[clicked_point['x'], clicked_point['y']]]) * scale_factor
        input_point_list = [input_point_np.astype(int).tolist()]

        #inputs = processor(raw_image, input_points=input_point, return_tensors="pt").to(device)
        inputs = processor(image_np, input_points=input_point_list, return_tensors="pt").to(device)
        inputs.pop("pixel_values", None)
        inputs.update({"image_embeddings": image_embeddings})
        with torch.no_grad():
            outputs = model(**inputs)
        masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
        mask = torch.squeeze(masks[0])[0] # mask.shape: (1,x,y) --> (x,y)

        mask = mask.to(torch.int)
        input_label = np.array([1])

        fig, ax = plt.subplots()
        ax.imshow(image_np)
        show_mask(mask, ax)
        #show_points_on_image(scale_np, input_point, input_label, ax)
        show_points(input_point_np, input_label, ax)
        ax.axis('off')
        st.pyplot(fig)



        # Get the area in square millimeters
        st.write(f'Area: {torch.sum(mask, dtype=torch.float).item() / pixels_per_unit ** 2} mm^2')