rsortino commited on
Commit
cb4c885
·
verified ·
1 Parent(s): 3ddae6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -21
README.md CHANGED
@@ -1,41 +1,43 @@
1
  ---
2
- title: Submission Template
3
  emoji: 🔥
4
- colorFrom: yellow
5
- colorTo: green
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
 
11
- # Random Baseline Model for Climate Disinformation Classification
 
 
 
 
 
 
 
 
 
12
 
13
  ## Model Description
14
 
15
- This is a random baseline model for the Frugal AI Challenge 2024, specifically for the text classification task of identifying climate disinformation. The model serves as a performance floor, randomly assigning labels to text inputs without any learning.
16
 
17
  ### Intended Use
18
 
19
- - **Primary intended uses**: Baseline comparison for climate disinformation classification models
20
- - **Primary intended users**: Researchers and developers participating in the Frugal AI Challenge
21
- - **Out-of-scope use cases**: Not intended for production use or real-world classification tasks
22
 
23
  ## Training Data
24
 
25
- The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
26
- - Size: ~6000 examples
27
  - Split: 80% train, 20% test
28
- - 8 categories of climate disinformation claims
29
 
30
  ### Labels
31
- 0. No relevant claim detected
32
- 1. Global warming is not happening
33
- 2. Not caused by humans
34
- 3. Not bad or beneficial
35
- 4. Solutions harmful/unnecessary
36
- 5. Science is unreliable
37
- 6. Proponents are biased
38
- 7. Fossil fuels are needed
39
 
40
  ## Performance
41
 
@@ -46,7 +48,8 @@ The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
46
  - Energy consumption tracked in Wh
47
 
48
  ### Model Architecture
49
- The model implements a random choice between the 8 possible labels, serving as the simplest possible baseline.
 
50
 
51
  ## Environmental Impact
52
 
@@ -68,4 +71,4 @@ This tracking helps establish a baseline for the environmental impact of model d
68
  - Dataset contains sensitive topics related to climate disinformation
69
  - Model makes random predictions and should not be used for actual classification
70
  - Environmental impact is tracked to promote awareness of AI's carbon footprint
71
- ```
 
1
  ---
2
+ title: CEA List FrugalAI Challenge
3
  emoji: 🔥
4
+ colorFrom: red
5
+ colorTo: yellow
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
 
11
+ # YOLO for Early Fire Detection
12
+
13
+ ## Team
14
+ - Renato Sortino
15
+ - Aboubacar Tuo
16
+ - Charles Villard
17
+ - Nicolas Allezard
18
+ - Nicolas Granger
19
+ - Angélique Loesch
20
+ - Quoc-Cuong Pham
21
 
22
  ## Model Description
23
 
24
+ YOLO model for early fire detection in forests, proposed as a solution for the Frugal AI Challenge 2025, image task.
25
 
26
  ### Intended Use
27
 
28
+ - **Primary intended uses**:
29
+ - **Primary intended users**:
30
+ - **Out-of-scope use cases**:
31
 
32
  ## Training Data
33
 
34
+ The model uses the pyronear/pyro-sdis dataset:
35
+ - Size: ~33000 examples
36
  - Split: 80% train, 20% test
37
+ - Images annotated with bounding boxes in correspondence of wildfire instances
38
 
39
  ### Labels
40
+ 0. Smoke
 
 
 
 
 
 
 
41
 
42
  ## Performance
43
 
 
48
  - Energy consumption tracked in Wh
49
 
50
  ### Model Architecture
51
+ The model is a YOLO-based object detection model, that does not depend on NMS in inference.
52
+ Bypassing this operation allows for further optimization at inference time via tensor decomposition and quantization
53
 
54
  ## Environmental Impact
55
 
 
71
  - Dataset contains sensitive topics related to climate disinformation
72
  - Model makes random predictions and should not be used for actual classification
73
  - Environmental impact is tracked to promote awareness of AI's carbon footprint
74
+ ```