|
|
|
import logging |
|
import re |
|
import pandas as pd |
|
import numpy as np |
|
import tensorflow as tf |
|
import nltk |
|
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory |
|
from transformers import AutoTokenizer, TFBertModel |
|
from tensorflow.keras import backend as K |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.layers import Layer |
|
from tensorflow_addons.optimizers import AdamW |
|
import streamlit as st |
|
from nltk.corpus import stopwords |
|
from concurrent.futures import ThreadPoolExecutor |
|
import kagglehub |
|
import os |
|
|
|
|
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
|
|
def load_dataset(): |
|
try: |
|
path = kagglehub.dataset_download("dannytheodore/brimo-app-review") |
|
dataset_path = f"{path}/brimo_googleplaystore_review.csv" |
|
return pd.read_csv(dataset_path, index_col=0) |
|
except Exception as e: |
|
logging.error(f"Error loading dataset: {e}") |
|
st.error("Failed to load the dataset.") |
|
return None |
|
|
|
|
|
def map_labels(score): |
|
if score >= 4: |
|
return 2 |
|
elif score == 3: |
|
return 1 |
|
else: |
|
return 0 |
|
|
|
|
|
def preprocess_text(text, stop_words, stemmer): |
|
try: |
|
text = text.lower() |
|
text = re.sub(r"@[A-Za-z0-9_]+", " ", text) |
|
text = re.sub(r"#[A-Za-z0-9_]+", " ", text) |
|
text = re.sub(r"http\S+", " ", text) |
|
text = re.sub(r"www.\S+", " ", text) |
|
text = re.sub(r"[^A-Za-z\s']", " ", text) |
|
tokens = text.split() |
|
tokens = [word for word in tokens if word not in stop_words] |
|
tokens = [stemmer.stem(word) for word in tokens] |
|
return ' '.join(tokens) |
|
except Exception as e: |
|
logging.error(f"Error processing text: {text}\n{e}") |
|
return text |
|
|
|
|
|
def preprocess_and_tokenize_reviews(reviews, tokenizer, stop_words, stemmer, max_length=128): |
|
with ThreadPoolExecutor() as executor: |
|
cleaned_reviews = list(executor.map(lambda x: preprocess_text(x, stop_words, stemmer), reviews)) |
|
return tokenizer(cleaned_reviews, padding='max_length', truncation=True, max_length=max_length, return_tensors='tf') |
|
|
|
|
|
class BertLayer(Layer): |
|
def __init__(self, base_model, **kwargs): |
|
super(BertLayer, self).__init__(**kwargs) |
|
self.base_model = base_model |
|
|
|
def call(self, inputs): |
|
input_ids, attention_mask = inputs |
|
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) |
|
return outputs.last_hidden_state |
|
|
|
def get_config(self): |
|
config = super(BertLayer, self).get_config() |
|
config.update({"base_model": self.base_model}) |
|
return config |
|
|
|
|
|
class PoolerLayer(Layer): |
|
def __init__(self, **kwargs): |
|
super(PoolerLayer, self).__init__(**kwargs) |
|
|
|
def call(self, inputs): |
|
cls_token = inputs[:, 0, :] |
|
pooled_output = tf.keras.activations.tanh(cls_token) |
|
return pooled_output |
|
|
|
|
|
class F1Score(tf.keras.metrics.Metric): |
|
def __init__(self, name="f1_score", **kwargs): |
|
super(F1Score, self).__init__(name=name, **kwargs) |
|
self.true_positives = self.add_weight(name="tp", initializer="zeros") |
|
self.false_positives = self.add_weight(name="fp", initializer="zeros") |
|
self.false_negatives = self.add_weight(name="fn", initializer="zeros") |
|
|
|
def update_state(self, y_true, y_pred, sample_weight=None): |
|
y_pred = tf.argmax(y_pred, axis=-1) |
|
y_true = tf.argmax(y_true, axis=-1) |
|
tp = tf.reduce_sum(tf.cast((y_true == y_pred) & (y_true != 0), tf.float32)) |
|
fp = tf.reduce_sum(tf.cast((y_true != y_pred) & (y_pred != 0), tf.float32)) |
|
fn = tf.reduce_sum(tf.cast((y_true != y_pred) & (y_true != 0), tf.float32)) |
|
self.true_positives.assign_add(tp) |
|
self.false_positives.assign_add(fp) |
|
self.false_negatives.assign_add(fn) |
|
|
|
def result(self): |
|
precision = self.true_positives / (self.true_positives + self.false_positives + K.epsilon()) |
|
recall = self.true_positives / (self.true_positives + self.false_negatives + K.epsilon()) |
|
f1 = 2 * (precision * recall) / (precision + recall + K.epsilon()) |
|
return f1 |
|
|
|
def reset_state(self): |
|
self.true_positives.assign(0) |
|
self.false_positives.assign(0) |
|
self.false_negatives.assign(0) |
|
|
|
|
|
def load_model_and_tokenizer(): |
|
try: |
|
model_path = 'best_model.h5' |
|
if os.path.exists(model_path): |
|
model = load_model(model_path, custom_objects={'TFBertModel': TFBertModel, 'BertLayer': BertLayer, 'PoolerLayer': PoolerLayer, 'F1Score': F1Score}) |
|
else: |
|
st.error("Model file not found. Please check the file path.") |
|
return None, None |
|
except Exception as e: |
|
logging.error(f"Error loading model: {e}") |
|
st.error("Failed to load the model. Please check the model file and try again.") |
|
return None, None |
|
|
|
|
|
optimizer = AdamW(learning_rate=2e-5, weight_decay=1e-5) |
|
|
|
|
|
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=[F1Score()]) |
|
|
|
|
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1') |
|
except Exception as e: |
|
logging.error(f"Error loading tokenizer: {e}") |
|
st.error("Failed to load the tokenizer. Please check the tokenizer files.") |
|
return None, None |
|
|
|
return model, tokenizer |
|
|
|
|
|
|
|
sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'} |
|
|
|
|
|
def run(model, tokenizer, stop_words, stemmer): |
|
|
|
banner_image = "https://businessnews.co.id/wp-content/uploads/2021/04/Screenshot_112.jpg" |
|
st.image(banner_image, use_container_width=True) |
|
|
|
|
|
|
|
st.title('BRImo Sentiment Analysis using IndoBERT') |
|
st.subheader('This application analyzes the sentiment of user-provided reviews.') |
|
|
|
|
|
with st.form(key='review_form'): |
|
review_input = st.text_area("Enter Review: (in Bahasa Indonesia)", height=150) |
|
submit_button = st.form_submit_button("Analyze Sentiment") |
|
|
|
if submit_button: |
|
if review_input: |
|
|
|
tokenized_review = preprocess_and_tokenize_reviews([review_input], tokenizer, stop_words, stemmer) |
|
|
|
|
|
if model: |
|
predictions = model.predict({'input_ids': tokenized_review['input_ids'], 'attention_mask': tokenized_review['attention_mask']}) |
|
predicted_label = np.argmax(predictions, axis=-1) |
|
sentiment = sentiment_map[predicted_label[0]] |
|
st.write(f"### Predicted Sentiment: {sentiment}") |
|
else: |
|
st.error("Model is not loaded. Please check the model file and try again.") |
|
else: |
|
st.error("Please enter a review to analyze.") |
|
|
|
if __name__ == "__main__": |
|
|
|
df = load_dataset() |
|
model, tokenizer = load_model_and_tokenizer() |
|
|
|
if df is not None and model is not None and tokenizer is not None: |
|
|
|
manual_stopwords = ["di", "ke", "dari", "yang", "dan", "atau", "dengan", "untuk", "ini", "itu", "aja", "saja", "lah", "bri", "brimo", "aplikasi", "rekening", "coba", "yg", "ke", "untuk", "nya", "saya", "dia", "dan", "sangat", "video", "login", "apk", "jadi", "akun", "malah", "uang", "banget", "dalam", "atm", "padahal"] |
|
stop_words = set(stopwords.words('indonesian')) |
|
stop_words.update(manual_stopwords) |
|
factory = StemmerFactory() |
|
stemmer = factory.create_stemmer() |
|
df['label'] = df['score'].apply(map_labels) |
|
run(model, tokenizer, stop_words, stemmer) |
|
else: |
|
if df is None: |
|
logging.error("Failed to load dataset.") |
|
st.error("Failed to load the dataset. Please check the dataset file.") |
|
if model is None or tokenizer is None: |
|
logging.error("Failed to load model or tokenizer.") |
|
st.error("Failed to load the model or tokenizer. Please check the model file.") |