import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel, AutoImageProcessor import gradio as gr import spaces processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5") vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5') text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True) text_model.eval() def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @spaces.GPU def TxtEmbed(text): sentences = [text] encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = text_model(**encoded_input) text_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],)) text_embeddings = F.normalize(text_embeddings, p=2, dim=1) return text_embeddings.to_list(); with gr.Blocks() as demo: txt = gr.Text(); out = gr.Text(); btn = gr.Button("Gerar embeddings") btn.click(TxtEmbed, [txt], [out]) if __name__ == "__main__": demo.launch(show_api=True)