text-embeddings / app.py
rrg92's picture
Update app.py
891634b verified
raw
history blame
2.03 kB
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
import gradio as gr
import spaces
model = AutoModel.from_pretrained('neuralmind/bert-base-portuguese-cased')
tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-base-portuguese-cased', do_lower_case=False)
# processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
# vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
# text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
# text_model.eval()
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@spaces.GPU
def TxtEmbed(text):
import torch
input_ids = tokenizer.encode(text, return_tensors='pt')
with torch.no_grad():
outs = model(input_ids)
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
# sentences = [text]
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
#
# with torch.no_grad():
# model_output = text_model(**encoded_input)
#
# text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
# text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
return (encoded.tolist())[0];
with gr.Blocks() as demo:
txt = gr.Text();
out = gr.Text();
btn = gr.Button("Gerar embeddings")
btn.click(TxtEmbed, [txt], [out])
if __name__ == "__main__":
demo.launch(show_api=True)