Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,18 @@ import spaces
|
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
| 11 |
|
|
@@ -17,6 +29,26 @@ else:
|
|
| 17 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
pipe = pipe.to(device)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def adjust_to_nearest_multiple(value, divisor=8):
|
| 21 |
"""
|
| 22 |
Adjusts the input value to the nearest multiple of the divisor.
|
|
@@ -68,6 +100,7 @@ def infer(
|
|
| 68 |
num_inference_steps=40,
|
| 69 |
progress=gr.Progress(track_tqdm=True),
|
| 70 |
):
|
|
|
|
| 71 |
if randomize_seed:
|
| 72 |
seed = random.randint(0, MAX_SEED)
|
| 73 |
|
|
@@ -77,15 +110,24 @@ def infer(
|
|
| 77 |
|
| 78 |
generator = torch.Generator().manual_seed(seed)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
return image, seed
|
| 91 |
|
|
|
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import random
|
| 12 |
+
import spaces
|
| 13 |
+
import torch
|
| 14 |
+
import time
|
| 15 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny
|
| 16 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 17 |
+
from custom_pipeline import FluxWithCFGPipeline
|
| 18 |
+
|
| 19 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 20 |
+
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
| 23 |
|
|
|
|
| 29 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 30 |
pipe = pipe.to(device)
|
| 31 |
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
dtype = torch.float16
|
| 37 |
+
pipe2 = FluxWithCFGPipeline.from_pretrained(
|
| 38 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
| 39 |
+
)
|
| 40 |
+
pipe2.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 41 |
+
pipe2.to("cuda")
|
| 42 |
+
pipe2.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
| 43 |
+
pipe2.set_adapters(["better"], adapter_weights=[1.0])
|
| 44 |
+
pipe2.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
| 45 |
+
pipe2.unload_lora_weights()
|
| 46 |
+
|
| 47 |
+
torch.cuda.empty_cache()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
def adjust_to_nearest_multiple(value, divisor=8):
|
| 53 |
"""
|
| 54 |
Adjusts the input value to the nearest multiple of the divisor.
|
|
|
|
| 100 |
num_inference_steps=40,
|
| 101 |
progress=gr.Progress(track_tqdm=True),
|
| 102 |
):
|
| 103 |
+
|
| 104 |
if randomize_seed:
|
| 105 |
seed = random.randint(0, MAX_SEED)
|
| 106 |
|
|
|
|
| 110 |
|
| 111 |
generator = torch.Generator().manual_seed(seed)
|
| 112 |
|
| 113 |
+
if num_inference_steps<=10:
|
| 114 |
+
image = pipe(
|
| 115 |
+
prompt=prompt,
|
| 116 |
+
negative_prompt=negative_prompt,
|
| 117 |
+
guidance_scale=guidance_scale,
|
| 118 |
+
num_inference_steps=num_inference_steps,
|
| 119 |
+
width=width,
|
| 120 |
+
height=height,
|
| 121 |
+
generator=generator,
|
| 122 |
+
).images[0]
|
| 123 |
+
else:
|
| 124 |
+
img = pipe2.generate_images(
|
| 125 |
+
prompt=prompt,
|
| 126 |
+
width=width,
|
| 127 |
+
height=height,
|
| 128 |
+
num_inference_steps=num_inference_steps,
|
| 129 |
+
generator=generator
|
| 130 |
+
)
|
| 131 |
|
| 132 |
return image, seed
|
| 133 |
|