Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| import io | |
| import base64 | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| import time | |
| from diffusers import DiffusionPipeline, AutoencoderTiny | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from custom_pipeline import FluxWithCFGPipeline | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/stable-diffusion-3.5-large" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.bfloat16 | |
| else: | |
| torch_dtype = torch.float32 | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) | |
| def adjust_to_nearest_multiple(value, divisor=8): | |
| """ | |
| Adjusts the input value to the nearest multiple of the divisor. | |
| Args: | |
| value (int): The value to adjust. | |
| divisor (int): The divisor to which the value should be divisible. Default is 8. | |
| Returns: | |
| int: The nearest multiple of the divisor. | |
| """ | |
| if value % divisor == 0: | |
| return value | |
| else: | |
| # Round to the nearest multiple of divisor | |
| return round(value / divisor) * divisor | |
| def adjust_dimensions(height, width): | |
| """ | |
| Adjusts the height and width to be divisible by 8. | |
| Args: | |
| height (int): The height to adjust. | |
| width (int): The width to adjust. | |
| Returns: | |
| tuple: Adjusted height and width. | |
| """ | |
| new_height = adjust_to_nearest_multiple(height) | |
| new_width = adjust_to_nearest_multiple(width) | |
| return new_height, new_width | |
| # MAX_SEED = np.iinfo(np.int32).max | |
| # MAX_IMAGE_SIZE = 4100 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer( | |
| prompt, | |
| negative_prompt="", | |
| seed=42, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=4.5, | |
| num_inference_steps=40, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| width = min(width, MAX_IMAGE_SIZE ) | |
| height = min(height, MAX_IMAGE_SIZE ) | |
| height, width = adjust_dimensions(height, width) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| buffered = io.BytesIO() | |
| image.save(buffered, format="WEBP") | |
| img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| img_data_url = f"data:image/webp;base64,{img_base64}" | |
| print(img_data_url) | |
| return image, img_data_url | |
| examples = [ | |
| "A capybara wearing a suit holding a sign that reads Hello World", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)") | |
| gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers.") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=7.5, | |
| step=0.1, | |
| value=4.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=40, | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |