apiprompting / app.py
rp-yu's picture
Update app.py
eadc600 verified
import os
import gradio as gr
import torch
import base64
import requests
from io import BytesIO
from API_LLaVA.functions import get_model as llava_get_model, get_preanswer as llava_get_preanswer, from_preanswer_to_mask as llava_from_preanswer_to_mask
from API_LLaVA.hook import hook_logger as llava_hook_logger
from API_LLaVA.main import blend_mask as llava_blend_mask
from API_CLIP.main import get_model as clip_get_model, gen_mask as clip_gen_mask, blend_mask as clip_blend_mask
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MARKDOWN = """
<div align='center'>
<b style="font-size: 2em;">API: Attention Prompting on Image for Large Vision-Language Models</b>
<br>
<br>
<br>
[<a href="https://arxiv.org/abs/2409.17143"> arXiv paper </a>]
[<a href="https://yu-rp.github.io/api-prompting/"> project page </a>]
[<a href="https://pypi.org/project/apiprompting/"> python package </a>]
[<a href="https://github.com/yu-rp/apiprompting"> code </a>]
</div>
"""
def init_clip_examples():
return gr.Examples(
[
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/clip_example_1_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/clip_example_1_masked.webp",
"What fruit is in the left part of the fridge?",
"-",
"fruit",
50,
5,
"BICUBIC",
0,
"In the left part of the fridge, there are strawberries and blueberries visible. The strawberries are in a clear plastic container, and the blueberries are in a similar container below the strawberries.",
"In the left part of the fridge, there are strawberries visible in a clear plastic container."
],
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/example_2_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/clip_example_2_masked.webp",
"On the right desk, what is to the left of the laptop?",
"-",
"laptop",
20,
9,
"BICUBIC",
200,
"To the left of the laptop on the right desk, there is a small potted plant.",
"To the left of the laptop on the right desk, there is a desk lamp."
],
],
[
image_input,
image_output,
text_query,
text_pre_answer,
text_highlight_text,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
text_original_image_response,
text_API_image_response
],
label = "Examples for CLIP_Based API"
)
def init_llava_examples():
return gr.Examples(
[
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/llava_example_1_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/llava_example_1_masked.webp",
"Which direction is the red bird facing in the image?",
" The red bird is facing away from the camera.</s>",
"red bird",
50,
5,
"BICUBIC",
0,
"The red bird in the image is facing to the right.",
"The red bird on the right is facing to the left in the image."
],
[
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/example_2_ori.jpg",
"https://raw.githubusercontent.com/yu-rp/asserts/main/API_Prompting/llava_example_2_masked.webp",
"On the right desk, what is to the left of the laptop?",
" On the right desk, there is a lamp to the left of the laptop.</s>",
" On the right desk, there is a lamp to the left of the laptop.</s>",
50,
7,
"BICUBIC",
100,
"To the left of the laptop on the right desk, there is a small potted plant.",
"To the left of the laptop on the right desk, there is a desk lamp."
],
],
[
image_input,
image_output,
text_query,
text_pre_answer,
text_highlight_text,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
text_original_image_response,
text_API_image_response
],
label = "Examples for LLaVA_Based API"
)
def get_base64_images(image):
image = image.convert('RGB')
buffer = BytesIO()
image.save(buffer, format='JPEG')
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
return image_base64
def vqa(image, question, api_key):
base64_image = get_base64_images(image)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4-turbo-2024-04-09",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": question
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail":"low"
}
}
]
}
],
"max_tokens": 300,
"temperature": 0.0,
"top_p": 0.0,
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
return response.json()["choices"][0]["message"]["content"]
def compare(input_image, output_image, query, api_key):
original_response = vqa(input_image, query, api_key)
api_response = vqa(output_image, query, api_key)
return original_response, api_response
def init_clip():
clip_model, clip_prs, clip_preprocess, _, clip_tokenizer = clip_get_model(
model_name = "ViT-L-14-336" if torch.cuda.is_available() else "ViT-L-14",
layer_index = 22, device= DEVICE)
return {"clip_model": clip_model, "clip_prs": clip_prs, "clip_preprocess": clip_preprocess, "clip_tokenizer": clip_tokenizer}
def init_llava():
llava_tokenizer, llava_model, llava_image_processor, llava_context_len, llava_model_name = llava_get_model("llava-v1.5-13b", device= DEVICE)
llava_hl = llava_hook_logger(llava_model, DEVICE, layer_index = 20)
return {"llava_tokenizer": llava_tokenizer, "llava_model": llava_model, "llava_image_processor": llava_image_processor, "llava_context_len": llava_context_len, "llava_model_name": llava_model_name, "llava_hl": llava_hl}
def change_api_method(api_method):
new_text_pre_answer = gr.Textbox(
label="LLaVA Response",
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
placeholder="",
value = "",
lines=4,
interactive=False,
type="text")
new_image_output = gr.Image(
label="API Masked Image",
type="pil",
interactive=False,
height=512
)
if api_method == "CLIP_Based API":
model_dict = init_clip()
new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
# new_examples = init_clip_examples()
elif api_method == "LLaVA_Based API":
model_dict = init_llava()
new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=True)
# new_examples = init_llava_examples()
else:
raise NotImplementedError
return model_dict, {}, new_generate_llava_response_button, new_text_pre_answer, new_image_output#, new_examples
def clear_cache(cache_dict):
return {}
def clear_mask_cache(cache_dict):
if "llava_mask" in cache_dict.keys():
del cache_dict["llava_mask"]
if "clip_mask" in cache_dict.keys():
del cache_dict["clip_mask"]
return cache_dict
def llava_pre_answer(image, query, cache_dict, model_dict):
pre_answer, cache_dict_update = llava_get_preanswer(
model_dict["llava_model"],
model_dict["llava_model_name"],
model_dict["llava_hl"],
model_dict["llava_tokenizer"],
model_dict["llava_image_processor"],
model_dict["llava_context_len"],
query, image)
cache_dict.update(cache_dict_update)
return pre_answer, cache_dict
def generate_mask(
image,
query,
pre_answer,
highlight_text,
api_method,
enhance_coe,
kernel_size,
interpolate_method_name,
mask_grayscale,
cache_dict,
model_dict):
if api_method == "LLaVA_Based API":
assert highlight_text.strip() in pre_answer
if "llava_mask" in cache_dict.keys() and cache_dict["llava_mask"] is not None:
pass
else:
cache_dict["llava_mask"] = llava_from_preanswer_to_mask(highlight_text, pre_answer, cache_dict)
masked_image = llava_blend_mask(image, cache_dict["llava_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
elif api_method == "CLIP_Based API":
# assert highlight_text in query
if "clip_mask" in cache_dict.keys() and cache_dict["clip_mask"] is not None:
pass
else:
cache_dict["clip_mask"] = clip_gen_mask(
model_dict["clip_model"],
model_dict["clip_prs"],
model_dict["clip_preprocess"],
DEVICE,
model_dict["clip_tokenizer"],
[image],
[highlight_text if highlight_text.strip() != "" else query])
masked_image = clip_blend_mask(image, *cache_dict["clip_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
else:
raise NotImplementedError
return masked_image, cache_dict
image_input = gr.Image(
label="Input Image",
type="pil",
interactive=True,
height=512
)
image_output = gr.Image(
label="API Masked Image",
type="pil",
interactive=False,
height=512
)
text_query = gr.Textbox(
label="Query",
placeholder="Enter a query about the image",
lines=2,
type="text")
text_pre_answer = gr.Textbox(
label="LLaVA Response",
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
placeholder="",
lines=2,
interactive=False,
type="text")
text_highlight_text = gr.Textbox(
label = "Hint Text",
info = "The text based on which the mask will be generated. For LLaVA-Based API, it should be a substring of the pre-answer.",
placeholder="Enter the hint text",
lines=1,
type="text")
text_api_token = gr.Textbox(
label = "OpenAI API Token",
placeholder="Input your OpenAI API token",
lines=1,
type="password")
text_original_image_response = gr.Textbox(
label="GPT Response (Original Image)",
placeholder="",
lines=2,
interactive=False,
type="text")
text_API_image_response = gr.Textbox(
label="GPT Response (API-maksed Image)",
placeholder="",
lines=2,
interactive=False,
type="text")
radio_api_method = gr.Radio(
["CLIP_Based API", "LLaVA_Based API"] if torch.cuda.is_available() else ["CLIP_Based API"],
interactive=True,
value = "CLIP_Based API",
label="Type of API")
slider_mask_grayscale = gr.Slider(
minimum=0,
maximum=255,
step = 0.5,
value=100,
interactive=True,
info = "0: black mask, 255: white mask.",
label="Grayscale")
slider_enhance_coe = gr.Slider(
minimum=1,
maximum=50,
step = 1,
value=1,
interactive=True,
info = "The larger contrast, the greater the contrast between the bright and dark areas of the mask.",
label="Contrast")
slider_kernel_size = gr.Slider(
minimum=1,
maximum=9,
step = 2,
value=1,
interactive=True,
info = "The larger smoothness, the smoother the mask appears, reducing the rectangular shapes.",
label="Smoothness")
radio_interpolate_method_name = gr.Radio(
["BICUBIC", "BILINEAR","BOX","LANCZOS", "NEAREST"],
value = "BICUBIC",
interactive=True,
label="Interpolation Method",
info="The interpolation method used during mask resizing.")
generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
generate_mask_button = gr.Button("API Go!")
ask_gpt_button = gr.Button("GPT Go!")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
state_cache = gr.State({})
state_model = gr.State(init_clip())
with gr.Row():
image_input.render()
image_output.render()
with gr.Accordion("Query and API Processing"):
with gr.Row():
radio_api_method.render()
with gr.Row(equal_height=True):
with gr.Column():
text_query.render()
generate_llava_response_button.render()
text_pre_answer.render()
text_highlight_text.render()
with gr.Column():
slider_enhance_coe.render()
slider_kernel_size.render()
radio_interpolate_method_name.render()
slider_mask_grayscale.render()
with gr.Row():
generate_mask_button.render()
with gr.Accordion("GPT Response"):
text_api_token.render()
ask_gpt_button.render()
with gr.Row():
text_original_image_response.render()
text_API_image_response.render()
with gr.Accordion("Examples"):
clip_examples = init_clip_examples()
llava_examples = init_llava_examples()
radio_api_method.change(
fn=change_api_method,
inputs = [radio_api_method],
outputs=[state_model, state_cache, generate_llava_response_button, text_pre_answer, image_output]
)
image_input.change(
fn=clear_cache,
inputs = state_cache,
outputs=state_cache
)
text_query.change(
fn=clear_cache,
inputs = state_cache,
outputs=state_cache
)
text_highlight_text.change(
fn=clear_mask_cache,
inputs = state_cache,
outputs=state_cache
)
generate_llava_response_button.click(
fn=llava_pre_answer,
inputs=[image_input, text_query, state_cache, state_model],
outputs=[text_pre_answer, state_cache]
)
generate_mask_button.click(
fn=generate_mask,
inputs=[
image_input,
text_query,
text_pre_answer,
text_highlight_text,
radio_api_method,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
state_cache,
state_model
],
outputs=[image_output, state_cache]
)
ask_gpt_button.click(
fn=compare,
inputs=[image_input, image_output, text_query, text_api_token],
outputs=[text_original_image_response, text_API_image_response]
)
demo.queue(max_size = 1).launch(show_error=True)