Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIN_BOX_WIDTH = 8 # Минимальная ширина текстовой области (в пикселях)
|
2 |
+
MIN_BOX_HEIGHT = 15 # Минимальная высота текстовой области (в пикселях)
|
3 |
+
MAX_PART_WIDTH = 600 # Максимальная ширина части строки (в пикселях)
|
4 |
+
BOX_HEIGHT_TOLERANCE = 8 # Максимальная разница между высотами текстовых областей для добавлению в строку (в пикселях)
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-printed")
|
9 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-printed")
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=device)
|
13 |
+
|
14 |
+
model_translation = T5ForConditionalGeneration.from_pretrained('utrobinmv/t5_translate_en_ru_zh_small_1024')
|
15 |
+
model_translation.to(device)
|
16 |
+
tokenizer_translation = T5Tokenizer.from_pretrained('utrobinmv/t5_translate_en_ru_zh_small_1024')
|
17 |
+
|
18 |
+
def get_text_from_images(images):
|
19 |
+
extracted_text = []
|
20 |
+
image_number = 0
|
21 |
+
for image in images:
|
22 |
+
image_number += 1
|
23 |
+
image_cv = np.array(image)
|
24 |
+
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
|
25 |
+
|
26 |
+
gray = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
|
27 |
+
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
|
28 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
29 |
+
bounding_boxes = [cv2.boundingRect(contour) for contour in contours]
|
30 |
+
|
31 |
+
def group_boxes_into_lines(boxes, tolerance=BOX_HEIGHT_TOLERANCE):
|
32 |
+
sorted_boxes = sorted(boxes, key=lambda box: box[1])
|
33 |
+
|
34 |
+
lines = []
|
35 |
+
current_line = []
|
36 |
+
|
37 |
+
for box in sorted_boxes:
|
38 |
+
x, y, w, h = box
|
39 |
+
|
40 |
+
if not current_line:
|
41 |
+
current_line.append(box)
|
42 |
+
else:
|
43 |
+
last_box = current_line[-1]
|
44 |
+
last_y = last_box[1]
|
45 |
+
|
46 |
+
if abs(y - last_y) <= tolerance:
|
47 |
+
current_line.append(box)
|
48 |
+
else:
|
49 |
+
lines.append(current_line)
|
50 |
+
current_line = [box]
|
51 |
+
|
52 |
+
if current_line:
|
53 |
+
lines.append(current_line)
|
54 |
+
|
55 |
+
return lines
|
56 |
+
|
57 |
+
lines = group_boxes_into_lines(bounding_boxes)
|
58 |
+
|
59 |
+
line_number = 0
|
60 |
+
for line in lines:
|
61 |
+
line_number += 1
|
62 |
+
|
63 |
+
x_coords = [box[0] for box in line]
|
64 |
+
y_coords = [box[1] for box in line]
|
65 |
+
widths = [box[2] for box in line]
|
66 |
+
heights = [box[3] for box in line]
|
67 |
+
|
68 |
+
x_min = min(x_coords)
|
69 |
+
y_min = min(y_coords)
|
70 |
+
x_max = max(x_coords[i] + widths[i] for i in range(len(line)))
|
71 |
+
y_max = max(y_coords[i] + heights[i] for i in range(len(line)))
|
72 |
+
|
73 |
+
line_image = image_cv[y_min:y_max, x_min:x_max]
|
74 |
+
|
75 |
+
if line_image.size == 0 or line_image.shape[0] < MIN_BOX_HEIGHT or line_image.shape[1] < MIN_BOX_WIDTH:
|
76 |
+
continue
|
77 |
+
|
78 |
+
parts = []
|
79 |
+
|
80 |
+
if line_image.shape[1] > MAX_PART_WIDTH:
|
81 |
+
num_parts = (line_image.shape[1] // MAX_PART_WIDTH) + 1
|
82 |
+
part_width = line_image.shape[1] // num_parts
|
83 |
+
|
84 |
+
for i in range(num_parts):
|
85 |
+
start_x = i * part_width
|
86 |
+
end_x = (i + 1) * part_width if i < num_parts - 1 else line_image.shape[1]
|
87 |
+
part = line_image[:, start_x:end_x]
|
88 |
+
parts.append(part)
|
89 |
+
else:
|
90 |
+
parts.append(line_image)
|
91 |
+
|
92 |
+
line_text = ""
|
93 |
+
part_number = 0
|
94 |
+
|
95 |
+
for part in parts:
|
96 |
+
part_number += 1
|
97 |
+
clear_output()
|
98 |
+
print(f"Images: {image_number}/{len(images)}")
|
99 |
+
print(f"Lines: {line_number}/{len(lines)}")
|
100 |
+
print(f"Parts: {part_number}/{len(parts)}")
|
101 |
+
|
102 |
+
part_image_pil = Image.fromarray(cv2.cvtColor(part, cv2.COLOR_BGR2RGB))
|
103 |
+
display(part_image_pil)
|
104 |
+
print("\n".join(extracted_text))
|
105 |
+
|
106 |
+
pixel_values = processor(part_image_pil, return_tensors="pt").pixel_values
|
107 |
+
pixel_values = pixel_values.to(device)
|
108 |
+
generated_ids = model.generate(pixel_values)
|
109 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
110 |
+
|
111 |
+
line_text += text
|
112 |
+
|
113 |
+
extracted_text.append(line_text)
|
114 |
+
|
115 |
+
final_text = "\n".join(extracted_text)
|
116 |
+
return final_text
|
117 |
+
|
118 |
+
def summarize(text, max_length=300, min_length=150):
|
119 |
+
result = summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)
|
120 |
+
return result[0]['summary_text']
|
121 |
+
|
122 |
+
def translate(text):
|
123 |
+
prefix = 'translate to ru: '
|
124 |
+
src_text = prefix + text
|
125 |
+
|
126 |
+
input_ids = tokenizer_translation(src_text, return_tensors="pt")
|
127 |
+
|
128 |
+
generated_tokens = model_translation.generate(**input_ids.to(device))
|
129 |
+
|
130 |
+
result = tokenizer_translation.batch_decode(generated_tokens, skip_special_tokens=True)
|
131 |
+
return result[0]
|
132 |
+
|
133 |
+
def launch(images, language):
|
134 |
+
if images == None or not images:
|
135 |
+
return "No input provided."
|
136 |
+
raw_text = get_text_from_images(images)
|
137 |
+
summary = summarize(raw_text)
|
138 |
+
if language == "rus":
|
139 |
+
return translate(summary)
|
140 |
+
return summary
|
141 |
+
|
142 |
+
def pdf_to_image(pdf, index = 0):
|
143 |
+
images = convert_from_bytes(pdf)
|
144 |
+
if 0 <= index < len(images):
|
145 |
+
return [images[index]]
|
146 |
+
return []
|
147 |
+
|
148 |
+
def pdf_to_images(pdf):
|
149 |
+
images = convert_from_bytes(pdf)
|
150 |
+
return images
|
151 |
+
|
152 |
+
def process_pdf(pdf_file, process_mode, page_index, language):
|
153 |
+
if process_mode == "all":
|
154 |
+
return launch(pdf_to_images(pdf_file), language)
|
155 |
+
elif process_mode == "single":
|
156 |
+
return launch(pdf_to_image(pdf_file, page_index), language)
|
157 |
+
|
158 |
+
def process_images(images, language):
|
159 |
+
pil_images = []
|
160 |
+
for image in images:
|
161 |
+
pil_images.append(Image.open(image))
|
162 |
+
launch(pil_images, language)
|
163 |
+
|
164 |
+
class PrintToTextbox:
|
165 |
+
def __init__(self, textbox):
|
166 |
+
self.textbox = textbox
|
167 |
+
self.buffer = ""
|
168 |
+
|
169 |
+
def write(self, text):
|
170 |
+
self.buffer += text
|
171 |
+
self.textbox.update(self.buffer)
|
172 |
+
|
173 |
+
def flush(self):
|
174 |
+
pass
|
175 |
+
|
176 |
+
def update_page_index_visibility(process_mode):
|
177 |
+
if process_mode == "single":
|
178 |
+
return gr.update(visible=True)
|
179 |
+
else:
|
180 |
+
return gr.update(visible=False)
|
181 |
+
|
182 |
+
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown("# PDF and Image Text Summarizer")
|
184 |
+
gr.Markdown("Upload a PDF file or images to extract and summarize text.")
|
185 |
+
|
186 |
+
language = gr.Radio(choices=["rus", "eng"], label="Select Language", value="rus")
|
187 |
+
|
188 |
+
with gr.Tabs():
|
189 |
+
with gr.TabItem("PDF"):
|
190 |
+
pdf_file = gr.File(label="Upload PDF File", type="binary")
|
191 |
+
process_mode = gr.Radio(choices=["all", "single"], label="Process Mode", value="all")
|
192 |
+
page_index = gr.Number(label="Page Index", value=0, precision=0, visible=False)
|
193 |
+
pdf_output = gr.Textbox(label="Extracted Text")
|
194 |
+
pdf_button = gr.Button("Extract Text from PDF")
|
195 |
+
|
196 |
+
with gr.TabItem("Images"):
|
197 |
+
images = gr.Files(label="Upload Images", file_types=["image"])
|
198 |
+
image_output = gr.Textbox(label="Extracted Text")
|
199 |
+
image_button = gr.Button("Extract Text from Images")
|
200 |
+
|
201 |
+
pdf_button.click(process_pdf, inputs=[pdf_file, process_mode, page_index, language], outputs=pdf_output)
|
202 |
+
image_button.click(process_images, inputs=[images, language], outputs=image_output)
|
203 |
+
process_mode.change(update_page_index_visibility, inputs=process_mode, outputs=page_index)
|
204 |
+
|
205 |
+
demo.launch(debug=True)
|