roselyu's picture
Create app.py
cf4eeb3 verified
raw
history blame
711 Bytes
import streamlit as st
from transformers import pipeline
# Streamlit application title
st.title("Financial News Summarization & Sentiment Analysis")
st.write("Summarize long financial news and identify the sentiment to help you make decisions.")
# Load the summarization and sentiment analysis pipelines
pipe = pipeline("text-classification", model="roselyu/FinSent-XLMR-FinNews")
# User input
user_input = st.text_area("Enter a financial news article:")
# Summarize and identify sentiment button
if st.button("Summarize and Identify Sentiment"):
# Analyze sentiment
sentiment_label = pipe(user_input)[0]["label"]
# Display summary and sentiment
st.write(f"Sentiment: {sentiment_label}")