import streamlit as st | |
from transformers import pipeline | |
# Streamlit application title | |
st.title("Financial News Summarization & Sentiment Analysis") | |
st.write("Summarize long financial news and identify the sentiment to help you make decisions.") | |
# Load the summarization and sentiment analysis pipelines | |
pipe = pipeline("text-classification", model="roselyu/FinSent-XLMR-FinNews") | |
# User input | |
user_input = st.text_area("Enter a financial news article:") | |
# Summarize and identify sentiment button | |
if st.button("Summarize and Identify Sentiment"): | |
# Analyze sentiment | |
sentiment_label = pipe(user_input)[0]["label"] | |
# Display summary and sentiment | |
st.write(f"Sentiment: {sentiment_label}") |