import os import sys import gym import matplotlib.pyplot as plt import torch.multiprocessing as mp from a3c.discrete_A3C import Net, Worker from a3c.shared_adam import SharedAdam from wordle_env.wordle import WordleEnvBase os.environ["OMP_NUM_THREADS"] = "1" if __name__ == "__main__": max_ep = int(sys.argv[1]) if len(sys.argv) > 1 else 100000 env_id = sys.argv[2] if len(sys.argv) > 2 else 'WordleEnv100FullAction-v0' env = gym.make(env_id) n_s = env.observation_space.shape[0] n_a = env.action_space.n words_list = env.words word_width = len(env.words[0]) gnet = Net(n_s, n_a, words_list, word_width) # global network gnet.share_memory() # share the global parameters in multiprocessing opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) # parallel training workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, words_list, word_width, win_ep) for i in range(mp.cpu_count())] [w.start() for w in workers] res = [] # record episode reward to plot while True: r = res_queue.get() if r is not None: res.append(r) else: break [w.join() for w in workers] print("Jugadas:", global_ep.value) print("Ganadas:", win_ep.value) plt.plot(res) plt.ylabel('Moving average ep reward') plt.xlabel('Step') plt.show()