""" Reinforcement Learning (A3C) using Pytroch + multiprocessing. The most simple implementation for continuous action. View more on my Chinese tutorial page [莫烦Python](https://morvanzhou.github.io/). """ import os import torch.multiprocessing as mp from .utils import v_wrap, push_and_pull, record, save_model from .shared_adam import SharedAdam from .net import Net GAMMA = 0.65 class Worker(mp.Process): def __init__(self, max_ep, gnet, opt, global_ep, global_ep_r, res_queue, name, env, N_S, N_A, words_list, word_width, winning_ep, model_checkpoint_dir): super(Worker, self).__init__() self.max_ep = max_ep self.name = 'w%02i' % name self.g_ep, self.g_ep_r, self.res_queue, self.winning_ep = global_ep, global_ep_r, res_queue, winning_ep self.gnet, self.opt = gnet, opt self.word_list = words_list self.lnet = Net(N_S, N_A, words_list, word_width) # local network self.env = env.unwrapped self.model_checkpoint_dir = model_checkpoint_dir def run(self): while self.g_ep.value < self.max_ep: s = self.env.reset() buffer_s, buffer_a, buffer_r = [], [], [] ep_r = 0. while True: a = self.lnet.choose_action(v_wrap(s[None, :])) s_, r, done, _ = self.env.step(a) ep_r += r buffer_a.append(a) buffer_s.append(s) buffer_r.append(r) if done: # update global and assign to local net # sync push_and_pull(self.opt, self.lnet, self.gnet, done, s_, buffer_s, buffer_a, buffer_r, GAMMA) goal_word = self.word_list[self.env.goal_word] record( self.g_ep, self.g_ep_r, ep_r, self.res_queue, self.name, goal_word, self.word_list[a], len(buffer_a), self.winning_ep) save_model(self.gnet, self.model_checkpoint_dir, self.g_ep.value, self.g_ep_r.value) buffer_s, buffer_a, buffer_r = [], [], [] break s = s_ self.res_queue.put(None) def train(env, max_ep, model_checkpoint_dir): os.environ["OMP_NUM_THREADS"] = "1" if not os.path.exists(model_checkpoint_dir): os.makedirs(model_checkpoint_dir) n_s = env.observation_space.shape[0] n_a = env.action_space.n words_list = env.words word_width = len(env.words[0]) gnet = Net(n_s, n_a, words_list, word_width) # global network gnet.share_memory() # share the global parameters in multiprocessing opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) # parallel training workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, words_list, word_width, win_ep, model_checkpoint_dir) for i in range(mp.cpu_count())] [w.start() for w in workers] res = [] # record episode reward to plot while True: r = res_queue.get() if r is not None: res.append(r) else: break [w.join() for w in workers] return global_ep, win_ep, gnet, res