#!/usr/bin/env python3 import argparse import gym import os import sys import time import matplotlib.pyplot as plt from a3c.discrete_A3C import train, evaluate, evaluate_checkpoints from wordle_env.wordle import WordleEnvBase def training_mode(args, env, model_checkpoint_dir): max_ep = args.games start_time = time.time() if args.model_name: pretrained_model_path = os.path.join( model_checkpoint_dir, args.model_name) global_ep, win_ep, gnet, res = train( env, max_ep, model_checkpoint_dir, pretrained_model_path) else: global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir) print("--- %.0f seconds ---" % (time.time() - start_time)) print_results(global_ep, win_ep, res) evaluate(gnet, env) def evaluation_mode(args, env, model_checkpoint_dir): print("Evaluation mode") results = evaluate_checkpoints(model_checkpoint_dir, env) print(results) def print_results(global_ep, win_ep, res): print("Jugadas:", global_ep.value) print("Ganadas:", win_ep.value) plt.plot(res) plt.ylabel('Moving average ep reward') plt.xlabel('Step') plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "enviroment", help="Enviroment (type of wordle game) used for training, example: WordleEnvFull-v0") parser.add_argument( "--models_dir", help="Directory where models are saved (default=checkpoints)", default='checkpoints') subparsers = parser.add_subparsers(help='sub-command help') parser_train = subparsers.add_parser( 'train', help='Train a model from scratch or train from pretrained model') parser_train.add_argument( "--games", "-g", help="Number of games to train", type=int, required=True) parser_train.add_argument( "--model_name", "-n", help="If want to train from a pretrained model, the name of the pretrained model file") parser_train.add_argument( "--gamma", help="Gamma hyperparameter value", type=float, default=0.) parser_train.set_defaults(func=training_mode) parser_eval = subparsers.add_parser( 'eval', help='Evaluate saved models for the enviroment') parser_eval.set_defaults(func=evaluation_mode) args = parser.parse_args() env_id = args.enviroment env = gym.make(env_id) model_checkpoint_dir = os.path.join(args.models_dir, env.unwrapped.spec.id) args.func(args, env, model_checkpoint_dir)