""" Reinforcement Learning (A3C) using Pytroch + multiprocessing. The most simple implementation for continuous action. View more on my Chinese tutorial page [莫烦Python](https://morvanzhou.github.io/). """ import os import torch import torch.multiprocessing as mp from .shared_adam import SharedAdam from .net import Net from .utils import v_wrap from .worker import Worker def train(env, max_ep, model_checkpoint_dir): os.environ["OMP_NUM_THREADS"] = "1" if not os.path.exists(model_checkpoint_dir): os.makedirs(model_checkpoint_dir) n_s = env.observation_space.shape[0] n_a = env.action_space.n words_list = env.words word_width = len(env.words[0]) gnet = Net(n_s, n_a, words_list, word_width) # global network gnet.share_memory() # share the global parameters in multiprocessing opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) # parallel training workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, words_list, word_width, win_ep, model_checkpoint_dir) for i in range(mp.cpu_count())] [w.start() for w in workers] res = [] # record episode reward to plot while True: r = res_queue.get() if r is not None: res.append(r) else: break [w.join() for w in workers] return global_ep, win_ep, gnet, res def evaluate_checkpoints(dir, env): n_s = env.observation_space.shape[0] n_a = env.action_space.n words_list = env.words word_width = len(env.words[0]) net = Net(n_s, n_a, words_list, word_width) results = {} for checkpoint in os.listdir(dir): checkpoint_path = os.path.join(dir, checkpoint) if os.path.isfile(checkpoint_path): net.load_state_dict(torch.load(checkpoint_path)) wins, guesses = evaluate(net, env) results[checkpoint] = wins, guesses return dict(sorted(results.items(), key=lambda x: (x[1][0], -x[1][1]), reverse=True)) def evaluate(net, env): n_wins = 0 n_guesses = 0 n_win_guesses = 0 env = env.unwrapped N = env.allowable_words for goal_word in env.words[:N]: win, outcomes = play(net, env) if win: n_wins += 1 n_win_guesses += len(outcomes) # else: # print("Lost!", goal_word, outcomes) n_guesses += len(outcomes) print(f"Evaluation complete, won {n_wins/N*100}% and took {n_win_guesses/n_wins} guesses per win, " f"{n_guesses / N} including losses.") return n_wins/N*100, n_win_guesses/n_wins def play(net, env): state = env.reset() outcomes = [] win = False for i in range(env.max_turns): action = net.choose_action(v_wrap(state[None, :])) state, reward, done, _ = env.step(action) outcomes.append((env.words[action], reward)) if done: if reward >= 0: win = True break return win, outcomes