Spaces:
Sleeping
Sleeping
Change suggestion endpoint for play word endpoint
Browse filesnow the endpoint receives a word and make the AI play
also refactored play module
- a3c/eval.py +5 -11
- a3c/play.py +25 -11
- api_rest/api.py +16 -18
a3c/eval.py
CHANGED
@@ -7,29 +7,23 @@ from .utils import v_wrap
|
|
7 |
|
8 |
|
9 |
def evaluate_checkpoints(dir, env):
|
10 |
-
n_s = env.observation_space.shape[0]
|
11 |
-
n_a = env.action_space.n
|
12 |
-
words_list = env.words
|
13 |
-
word_width = len(env.words[0])
|
14 |
-
net = GreedyNet(n_s, n_a, words_list, word_width)
|
15 |
results = {}
|
16 |
for checkpoint in os.listdir(dir):
|
17 |
-
|
18 |
-
if os.path.isfile(
|
19 |
-
|
20 |
-
wins, guesses = evaluate(net, env)
|
21 |
results[checkpoint] = wins, guesses
|
22 |
return dict(sorted(results.items(), key=lambda x: (x[1][0], -x[1][1]), reverse=True))
|
23 |
|
24 |
|
25 |
-
def evaluate(
|
26 |
n_wins = 0
|
27 |
n_guesses = 0
|
28 |
n_win_guesses = 0
|
29 |
env = env.unwrapped
|
30 |
N = env.allowable_words
|
31 |
for goal_word in env.words[:N]:
|
32 |
-
win, outcomes = play(
|
33 |
if win:
|
34 |
n_wins += 1
|
35 |
n_win_guesses += len(outcomes)
|
|
|
7 |
|
8 |
|
9 |
def evaluate_checkpoints(dir, env):
|
|
|
|
|
|
|
|
|
|
|
10 |
results = {}
|
11 |
for checkpoint in os.listdir(dir):
|
12 |
+
pretrained_model_path = os.path.join(dir, checkpoint)
|
13 |
+
if os.path.isfile(pretrained_model_path):
|
14 |
+
wins, guesses = evaluate(env, pretrained_model_path)
|
|
|
15 |
results[checkpoint] = wins, guesses
|
16 |
return dict(sorted(results.items(), key=lambda x: (x[1][0], -x[1][1]), reverse=True))
|
17 |
|
18 |
|
19 |
+
def evaluate(env, pretrained_model_path):
|
20 |
n_wins = 0
|
21 |
n_guesses = 0
|
22 |
n_win_guesses = 0
|
23 |
env = env.unwrapped
|
24 |
N = env.allowable_words
|
25 |
for goal_word in env.words[:N]:
|
26 |
+
win, outcomes = play(env, pretrained_model_path, goal_word)
|
27 |
if win:
|
28 |
n_wins += 1
|
29 |
n_win_guesses += len(outcomes)
|
a3c/play.py
CHANGED
@@ -13,6 +13,21 @@ def get_play_model_path():
|
|
13 |
return os.path.join(model_checkpoint_dir, model_name)
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def suggest(
|
17 |
env,
|
18 |
words,
|
@@ -27,14 +42,9 @@ def suggest(
|
|
27 |
:param sequence: History of moves and outcomes until now
|
28 |
:return:
|
29 |
"""
|
30 |
-
n_s = env.observation_space.shape[0]
|
31 |
-
n_a = env.action_space.n
|
32 |
env = env.unwrapped
|
33 |
-
|
34 |
-
|
35 |
-
word_width = len(env.words[0])
|
36 |
-
net = GreedyNet(n_s, n_a, words_list, word_width)
|
37 |
-
net.load_state_dict(torch.load(pretrained_model_path))
|
38 |
for word, mask in zip(words, states):
|
39 |
word = word.upper()
|
40 |
mask = list(map(int, mask))
|
@@ -42,16 +52,20 @@ def suggest(
|
|
42 |
return env.words[net.choose_action(v_wrap(state[None, :]))]
|
43 |
|
44 |
|
45 |
-
def play(
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
outcomes = []
|
48 |
win = False
|
49 |
for i in range(env.max_turns):
|
50 |
action = net.choose_action(v_wrap(state[None, :]))
|
51 |
state, reward, done, _ = env.step(action)
|
52 |
-
outcomes.append(
|
53 |
if done:
|
54 |
-
if reward
|
55 |
win = True
|
56 |
break
|
57 |
return win, outcomes
|
|
|
13 |
return os.path.join(model_checkpoint_dir, model_name)
|
14 |
|
15 |
|
16 |
+
def get_net(env, pretrained_model_path):
|
17 |
+
n_s = env.observation_space.shape[0]
|
18 |
+
n_a = env.action_space.n
|
19 |
+
words_list = env.words
|
20 |
+
word_width = len(env.words[0])
|
21 |
+
net = GreedyNet(n_s, n_a, words_list, word_width)
|
22 |
+
net.load_state_dict(torch.load(pretrained_model_path))
|
23 |
+
return net
|
24 |
+
|
25 |
+
|
26 |
+
def get_initial_state(env):
|
27 |
+
state = env.reset()
|
28 |
+
return state
|
29 |
+
|
30 |
+
|
31 |
def suggest(
|
32 |
env,
|
33 |
words,
|
|
|
42 |
:param sequence: History of moves and outcomes until now
|
43 |
:return:
|
44 |
"""
|
|
|
|
|
45 |
env = env.unwrapped
|
46 |
+
net = get_net(env, pretrained_model_path)
|
47 |
+
state = get_initial_state(env)
|
|
|
|
|
|
|
48 |
for word, mask in zip(words, states):
|
49 |
word = word.upper()
|
50 |
mask = list(map(int, mask))
|
|
|
52 |
return env.words[net.choose_action(v_wrap(state[None, :]))]
|
53 |
|
54 |
|
55 |
+
def play(env, pretrained_model_path, goal_word = None):
|
56 |
+
env = env.unwrapped
|
57 |
+
net = get_net(env, pretrained_model_path)
|
58 |
+
state = get_initial_state(env)
|
59 |
+
if goal_word:
|
60 |
+
env.set_goal_word(goal_word)
|
61 |
outcomes = []
|
62 |
win = False
|
63 |
for i in range(env.max_turns):
|
64 |
action = net.choose_action(v_wrap(state[None, :]))
|
65 |
state, reward, done, _ = env.step(action)
|
66 |
+
outcomes.append(env.words[action])
|
67 |
if done:
|
68 |
+
if reward > 0:
|
69 |
win = True
|
70 |
break
|
71 |
return win, outcomes
|
api_rest/api.py
CHANGED
@@ -1,38 +1,36 @@
|
|
1 |
-
from a3c.play import get_play_model_path,
|
2 |
from flask import Flask, request, jsonify
|
|
|
3 |
from wordle_env.words import target_vocabulary
|
4 |
from wordle_env.wordle import get_env
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
|
9 |
-
def
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
if not all(len(n) == 5 and all(c.isdigit() and 0 <= int(c) <= 2 for c in n) for n in states):
|
15 |
-
return True, 'Invalid input, states must be 5 characters long and the numbers between 0 and 2 inclusive'
|
16 |
-
|
17 |
return False, ''
|
18 |
|
19 |
|
20 |
-
@app.route('/
|
21 |
-
|
|
|
22 |
# Get the list of words and list of number strings from the request
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
print(states)
|
27 |
-
error, msge = validate_params(words, states)
|
28 |
if error:
|
29 |
return jsonify({'error': msge}), 400
|
30 |
|
|
|
31 |
env = get_env()
|
32 |
model_path = get_play_model_path()
|
33 |
# Call the suggest function with the input lists and return the result
|
34 |
-
|
35 |
-
return jsonify({'
|
36 |
|
37 |
|
38 |
if __name__ == '__main__':
|
|
|
1 |
+
from a3c.play import get_play_model_path, play
|
2 |
from flask import Flask, request, jsonify
|
3 |
+
from flask_cors import cross_origin
|
4 |
from wordle_env.words import target_vocabulary
|
5 |
from wordle_env.wordle import get_env
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
9 |
|
10 |
+
def validate_goal_word(word):
|
11 |
+
if not word:
|
12 |
+
return True, 'Goal word not provided'
|
13 |
+
if word.upper() not in target_vocabulary:
|
14 |
+
return True, 'Goal word not in vocabulary'
|
|
|
|
|
|
|
15 |
return False, ''
|
16 |
|
17 |
|
18 |
+
@app.route('/play_word', methods=['GET'])
|
19 |
+
@cross_origin(origin='*', headers=['Content-Type', 'Authorization'])
|
20 |
+
def get_play():
|
21 |
# Get the list of words and list of number strings from the request
|
22 |
+
word = request.args.get('goal_word')
|
23 |
+
|
24 |
+
error, msge = validate_goal_word(word)
|
|
|
|
|
25 |
if error:
|
26 |
return jsonify({'error': msge}), 400
|
27 |
|
28 |
+
word = word.upper()
|
29 |
env = get_env()
|
30 |
model_path = get_play_model_path()
|
31 |
# Call the suggest function with the input lists and return the result
|
32 |
+
won, attempts = play(env, model_path, word)
|
33 |
+
return jsonify({'attempts': attempts, 'won': won})
|
34 |
|
35 |
|
36 |
if __name__ == '__main__':
|