Spaces:
Sleeping
Sleeping
Add named command line arguments and optional arguments
Browse files
main.py
CHANGED
@@ -1,12 +1,36 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
import gym
|
|
|
|
|
4 |
import time
|
5 |
import matplotlib.pyplot as plt
|
6 |
from a3c.discrete_A3C import train, evaluate, evaluate_checkpoints
|
7 |
from wordle_env.wordle import WordleEnvBase
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def print_results(global_ep, win_ep, res):
|
11 |
print("Jugadas:", global_ep.value)
|
12 |
print("Ganadas:", win_ep.value)
|
@@ -17,23 +41,29 @@ def print_results(global_ep, win_ep, res):
|
|
17 |
|
18 |
|
19 |
if __name__ == "__main__":
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
env = gym.make(env_id)
|
25 |
-
model_checkpoint_dir = os.path.join(
|
26 |
-
|
27 |
-
start_time = time.time()
|
28 |
-
if pretrained:
|
29 |
-
pretrained_model_path = os.path.join(model_checkpoint_dir, sys.argv[4]) if len(sys.argv) > 4 else ''
|
30 |
-
global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir, pretrained_model_path)
|
31 |
-
else:
|
32 |
-
global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir)
|
33 |
-
print("--- %.0f seconds ---" % (time.time() - start_time))
|
34 |
-
print_results(global_ep, win_ep, res)
|
35 |
-
evaluate(gnet, env)
|
36 |
-
else:
|
37 |
-
print("Evaluation mode")
|
38 |
-
results = evaluate_checkpoints(model_checkpoint_dir, env)
|
39 |
-
print(results)
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import argparse
|
4 |
import gym
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
import time
|
8 |
import matplotlib.pyplot as plt
|
9 |
from a3c.discrete_A3C import train, evaluate, evaluate_checkpoints
|
10 |
from wordle_env.wordle import WordleEnvBase
|
11 |
|
12 |
|
13 |
+
def training_mode(args, env, model_checkpoint_dir):
|
14 |
+
max_ep = args.games
|
15 |
+
start_time = time.time()
|
16 |
+
if args.model_name:
|
17 |
+
pretrained_model_path = os.path.join(
|
18 |
+
model_checkpoint_dir, args.model_name)
|
19 |
+
global_ep, win_ep, gnet, res = train(
|
20 |
+
env, max_ep, model_checkpoint_dir, pretrained_model_path)
|
21 |
+
else:
|
22 |
+
global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir)
|
23 |
+
print("--- %.0f seconds ---" % (time.time() - start_time))
|
24 |
+
print_results(global_ep, win_ep, res)
|
25 |
+
evaluate(gnet, env)
|
26 |
+
|
27 |
+
|
28 |
+
def evaluation_mode(args, env, model_checkpoint_dir):
|
29 |
+
print("Evaluation mode")
|
30 |
+
results = evaluate_checkpoints(model_checkpoint_dir, env)
|
31 |
+
print(results)
|
32 |
+
|
33 |
+
|
34 |
def print_results(global_ep, win_ep, res):
|
35 |
print("Jugadas:", global_ep.value)
|
36 |
print("Ganadas:", win_ep.value)
|
|
|
41 |
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
parser.add_argument(
|
46 |
+
"enviroment", help="Enviroment (type of wordle game) used for training, example: WordleEnvFull-v0")
|
47 |
+
parser.add_argument(
|
48 |
+
"--models_dir", help="Directory where models are saved (default=checkpoints)", default='checkpoints')
|
49 |
+
subparsers = parser.add_subparsers(help='sub-command help')
|
50 |
+
|
51 |
+
parser_train = subparsers.add_parser(
|
52 |
+
'train', help='Train a model from scratch or train from pretrained model')
|
53 |
+
parser_train.add_argument(
|
54 |
+
"--games", "-g", help="Number of games to train", type=int, required=True)
|
55 |
+
parser_train.add_argument(
|
56 |
+
"--model_name", "-n", help="If want to train from a pretrained model, the name of the pretrained model file")
|
57 |
+
parser_train.add_argument(
|
58 |
+
"--gamma", help="Gamma hyperparameter value", type=float, default=0.)
|
59 |
+
parser_train.set_defaults(func=training_mode)
|
60 |
+
|
61 |
+
parser_eval = subparsers.add_parser(
|
62 |
+
'eval', help='Evaluate saved models for the enviroment')
|
63 |
+
parser_eval.set_defaults(func=evaluation_mode)
|
64 |
+
|
65 |
+
args = parser.parse_args()
|
66 |
+
env_id = args.enviroment
|
67 |
env = gym.make(env_id)
|
68 |
+
model_checkpoint_dir = os.path.join(args.models_dir, env.unwrapped.spec.id)
|
69 |
+
args.func(args, env, model_checkpoint_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|