Spaces:
Sleeping
Sleeping
""" | |
Reinforcement Learning (A3C) using Pytroch + multiprocessing. | |
The most simple implementation for continuous action. | |
View more on my Chinese tutorial page [莫烦Python](https://morvanzhou.github.io/). | |
""" | |
import os | |
import torch | |
import torch.multiprocessing as mp | |
from .shared_adam import SharedAdam | |
from .net import Net | |
from .utils import v_wrap | |
from .worker import Worker | |
def train(env, max_ep, model_checkpoint_dir, pretrained_model_path=None): | |
os.environ["OMP_NUM_THREADS"] = "1" | |
if not os.path.exists(model_checkpoint_dir): | |
os.makedirs(model_checkpoint_dir) | |
n_s = env.observation_space.shape[0] | |
n_a = env.action_space.n | |
words_list = env.words | |
word_width = len(env.words[0]) | |
gnet = Net(n_s, n_a, words_list, word_width) # global network | |
if pretrained_model_path: | |
gnet.load_state_dict(torch.load(pretrained_model_path)) | |
gnet.share_memory() # share the global parameters in multiprocessing | |
opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer | |
global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) | |
# parallel training | |
workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, | |
words_list, word_width, win_ep, model_checkpoint_dir, pretrained_model_path) for i in range(mp.cpu_count())] | |
[w.start() for w in workers] | |
res = [] # record episode reward to plot | |
while True: | |
r = res_queue.get() | |
if r is not None: | |
res.append(r) | |
else: | |
break | |
[w.join() for w in workers] | |
return global_ep, win_ep, gnet, res | |
def evaluate_checkpoints(dir, env): | |
n_s = env.observation_space.shape[0] | |
n_a = env.action_space.n | |
words_list = env.words | |
word_width = len(env.words[0]) | |
net = Net(n_s, n_a, words_list, word_width) | |
results = {} | |
for checkpoint in os.listdir(dir): | |
checkpoint_path = os.path.join(dir, checkpoint) | |
if os.path.isfile(checkpoint_path): | |
net.load_state_dict(torch.load(checkpoint_path)) | |
wins, guesses = evaluate(net, env) | |
results[checkpoint] = wins, guesses | |
return dict(sorted(results.items(), key=lambda x: (x[1][0], -x[1][1]), reverse=True)) | |
def evaluate(net, env): | |
n_wins = 0 | |
n_guesses = 0 | |
n_win_guesses = 0 | |
env = env.unwrapped | |
N = env.allowable_words | |
for goal_word in env.words[:N]: | |
win, outcomes = play(net, env) | |
if win: | |
n_wins += 1 | |
n_win_guesses += len(outcomes) | |
# else: | |
# print("Lost!", goal_word, outcomes) | |
n_guesses += len(outcomes) | |
print(f"Evaluation complete, won {n_wins/N*100}% and took {n_win_guesses/n_wins} guesses per win, " | |
f"{n_guesses / N} including losses.") | |
return n_wins/N*100, n_win_guesses/n_wins | |
def play(net, env): | |
state = env.reset() | |
outcomes = [] | |
win = False | |
for i in range(env.max_turns): | |
action = net.choose_action(v_wrap(state[None, :])) | |
state, reward, done, _ = env.step(action) | |
outcomes.append((env.words[action], reward)) | |
if done: | |
if reward >= 0: | |
win = True | |
break | |
return win, outcomes | |