wordle-solver / main.py
santit96's picture
Fix code styles
c10a05f
raw
history blame
4.41 kB
#!/usr/bin/env python3
import argparse
import os
import time
import matplotlib.pyplot as plt
from a3c.train import train
from a3c.eval import evaluate, evaluate_checkpoints
from a3c.play import suggest
from wordle_env.wordle import get_env
def training_mode(args, env, model_checkpoint_dir):
max_ep = args.games
start_time = time.time()
pretrained_model_path = os.path.join(
model_checkpoint_dir, args.model_name
) if args.model_name else args.model_name
global_ep, win_ep, gnet, res = train(
env, max_ep, model_checkpoint_dir, args.gamma,
args.seed, pretrained_model_path, args.save,
args.min_reward, args.every_n_save
)
print("--- %.0f seconds ---" % (time.time() - start_time))
print_results(global_ep, win_ep, res)
evaluate(gnet, env)
def evaluation_mode(args, env, model_checkpoint_dir):
print("Evaluation mode")
results = evaluate_checkpoints(model_checkpoint_dir, env)
print(results)
def play_mode(args, env, model_checkpoint_dir):
print("Play mode")
words = [word.strip() for word in args.words.split(',')]
states = [state.strip() for state in args.states.split(',')]
pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name)
word = suggest(env, words, states, pretrained_model_path)
print(word)
def print_results(global_ep, win_ep, res):
print("Jugadas:", global_ep.value)
print("Ganadas:", win_ep.value)
plt.plot(res)
plt.ylabel('Moving average ep reward')
plt.xlabel('Step')
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"enviroment",
help="Enviroment (type of wordle game) used for training, \
example: WordleEnvFull-v0"
)
parser.add_argument(
"--models_dir",
help="Directory where models are saved (default=checkpoints)",
default='checkpoints'
)
subparsers = parser.add_subparsers(help='sub-command help')
parser_train = subparsers.add_parser(
'train',
help='Train a model from scratch or train from pretrained model'
)
parser_train.add_argument(
"--games",
"-g",
help="Number of games to train",
type=int,
required=True
)
parser_train.add_argument(
"--model_name",
"-m",
help="If want to train from a pretrained model, \
the name of the pretrained model file"
)
parser_train.add_argument(
"--gamma",
help="Gamma hyperparameter (discount factor) value",
type=float,
default=0.
)
parser_train.add_argument(
"--seed",
help="Seed used for random numbers generation",
type=int,
default=100
)
parser_train.add_argument(
"--save",
'-s',
help="Save instances of the model while training",
action='store_true'
)
parser_train.add_argument(
"--min_reward",
help="The minimun global reward value achieved for saving the model",
type=float,
default=9.9
)
parser_train.add_argument(
"--every_n_save",
help="Check every n training steps to save the model",
type=int,
default=100
)
parser_train.set_defaults(func=training_mode)
parser_eval = subparsers.add_parser(
'eval', help='Evaluate saved models for the enviroment')
parser_eval.set_defaults(func=evaluation_mode)
parser_play = subparsers.add_parser(
'play',
help='Give the model a word and the state result \
and the model will try to predict the goal word'
)
parser_play.add_argument(
"--words",
"-w",
help="List of words played in the wordle game",
required=True
)
parser_play.add_argument(
"--states",
"-st",
help="List of states returned by playing each of the words",
required=True
)
parser_play.add_argument(
"--model_name",
"-m",
help="Name of the pretrained model file thich will play the game",
required=True
)
parser_play.set_defaults(func=play_mode)
args = parser.parse_args()
env_id = args.enviroment
env = get_env(env_id)
model_checkpoint_dir = os.path.join(args.models_dir, env.unwrapped.spec.id)
args.func(args, env, model_checkpoint_dir)