Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.multiprocessing as mp | |
from .shared_adam import SharedAdam | |
from .net import Net | |
from .worker import Worker | |
def train(env, max_ep, model_checkpoint_dir, gamma=0., pretrained_model_path=None, save=False, min_reward=9.9, every_n_save=100): | |
os.environ["OMP_NUM_THREADS"] = "1" | |
if not os.path.exists(model_checkpoint_dir): | |
os.makedirs(model_checkpoint_dir) | |
n_s = env.observation_space.shape[0] | |
n_a = env.action_space.n | |
words_list = env.words | |
word_width = len(env.words[0]) | |
gnet = Net(n_s, n_a, words_list, word_width) # global network | |
if pretrained_model_path: | |
gnet.load_state_dict(torch.load(pretrained_model_path)) | |
gnet.share_memory() # share the global parameters in multiprocessing | |
opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer | |
global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) | |
# parallel training | |
workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, | |
words_list, word_width, win_ep, model_checkpoint_dir, gamma, pretrained_model_path, save, min_reward, every_n_save) for i in range(mp.cpu_count())] | |
[w.start() for w in workers] | |
res = [] # record episode reward to plot | |
while True: | |
r = res_queue.get() | |
if r is not None: | |
res.append(r) | |
else: | |
break | |
[w.join() for w in workers] | |
if save: | |
torch.save(gnet.state_dict(), os.path.join(model_checkpoint_dir, f'model_{env.unwrapped.spec.id}.pth')) | |
return global_ep, win_ep, gnet, res | |