santit96's picture
Add test to evaluate complex cases
d9e6245
raw
history blame
5.25 kB
import os
from typing import Optional, List, Tuple
import gym
from gym import spaces
import numpy as np
from . import state
from .const import WORDLE_N, REWARD, WORDLE_CHARS
from .words import complete_vocabulary, target_vocabulary
import random
def _load_words(limit: Optional[int] = None, complete: Optional[bool] = False) -> List[str]:
words = complete_vocabulary if complete else target_vocabulary
return words if not limit else words[:limit]
class WordleEnvBase(gym.Env):
"""
Actions:
Can play any 5 letter word in vocabulary
* 13k for full vocab
State space is defined as:
* 6 possibilities for turns (WORDLE_TURNS)
* For each in VALID_CHARS [A-Z] can be in one of 3^WORDLE_N states: (No, Maybe, Yes)
for full game, this is (3^5)^26
Each state has 1 + 5*26 possibilities
Reward:
Reward is 10 for guessing the right word, -10 for not guessing the right word after 6 guesses.
1 from every letter correctly guessed on each try
Starting State:
Random goal word
Initial state with turn 0, all chars Unvisited
"""
def __init__(self, words: List[str],
max_turns: int = 6,
allowable_words: Optional[int] = None,
mask_based_state_updates: bool = False):
assert all(len(w) == WORDLE_N for w in words), f'Not all words of length {WORDLE_N}, {words}'
self.words = words
self.max_turns = max_turns
self.allowable_words = allowable_words
self.mask_based_state_updates = mask_based_state_updates
if not self.allowable_words:
self.allowable_words = len(self.words)
self.action_space = spaces.Discrete(self.words_as_action_space())
self.observation_space = spaces.MultiDiscrete(state.get_nvec(self.max_turns))
self.done = True
self.goal_word: int = -1
self.state: state.WordleState = None
self.state_updater = state.update
if self.mask_based_state_updates:
self.state_updater = state.update_mask
def step(self, action: int):
if self.done:
raise ValueError(
"You are calling 'step()' even though this "
"environment has already returned done = True. You "
"should always call 'reset()' once you receive 'done = "
"True' -- any further steps are undefined behavior."
)
word = self.words[action]
goal_word = self.words[self.goal_word]
# assert word in self.words, f'{word} not in words list'
self.state, r = self.state_updater(state=self.state,
word=word,
goal_word=goal_word)
reward = r
if action == self.goal_word:
self.done = True
# reward = REWARD
if state.remaining_steps(self.state) == self.max_turns-1:
reward = 0 # -10*REWARD # No reward for guessing off the bat
else:
# reward = REWARD*(self.state.remaining_steps() + 1) / self.max_turns
reward = REWARD
elif state.remaining_steps(self.state) == 0:
self.done = True
reward = -REWARD
return self.state.copy(), reward, self.done, {"goal_id": self.goal_word}
def reset(self):
self.state = state.new(self.max_turns)
self.done = False
random_word = random.choice(self.words[:self.allowable_words])
self.goal_word = self.words.index(random_word)
return self.state.copy()
def set_goal_word(self, goal_word: str):
self.goal_word = self.words.index(goal_word)
def set_goal_encoded(self, goal_encoded: int):
self.goal_word = goal_encoded
def words_as_action_space(self):
return len(self.words)
class WordleEnv100OneAction(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(100), allowable_words=1)
class WordleEnv100WithMask(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(100),
mask_based_state_updates=True)
class WordleEnv100TwoAction(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(100), allowable_words=2)
class WordleEnv100fiftyAction(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(100), allowable_words=50)
class WordleEnv100FullAction(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(100), allowable_words=100)
class WordleEnv1000WithMask(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(1000),
mask_based_state_updates=True)
class WordleEnv1000FullAction(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(1000), allowable_words=1000)
class WordleEnvFull(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words())
class WordleEnvRealWithMask(WordleEnvBase):
def __init__(self):
super().__init__(words=_load_words(), allowable_words=2315,
mask_based_state_updates=True)