Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import gym | |
import matplotlib.pyplot as plt | |
import torch.multiprocessing as mp | |
from a3c.discrete_A3C import Net, Worker | |
from a3c.shared_adam import SharedAdam | |
from a3c.utils import v_wrap | |
from wordle_env.wordle import WordleEnvBase | |
os.environ["OMP_NUM_THREADS"] = "1" | |
def evaluate(net, env): | |
print("Evaluation mode") | |
n_wins = 0 | |
n_guesses = 0 | |
n_win_guesses = 0 | |
env = env.unwrapped | |
N = env.allowable_words | |
for goal_word in env.words[:N]: | |
win, outcomes = play(net, env) | |
if win: | |
n_wins += 1 | |
n_win_guesses += len(outcomes) | |
else: | |
print("Lost!", goal_word, outcomes) | |
n_guesses += len(outcomes) | |
print(f"Evaluation complete, won {n_wins/N*100}% and took {n_win_guesses/n_wins} guesses per win, " | |
f"{n_guesses / N} including losses.") | |
def play(net, env): | |
state = env.reset() | |
outcomes = [] | |
win = False | |
for i in range(env.max_turns): | |
action = net.choose_action(v_wrap(state[None, :])) | |
state, reward, done, _ = env.step(action) | |
outcomes.append((env.words[action], reward)) | |
if done: | |
if reward >= 0: | |
win = True | |
break | |
return win, outcomes | |
if __name__ == "__main__": | |
max_ep = int(sys.argv[1]) if len(sys.argv) > 1 else 100000 | |
env_id = sys.argv[2] if len(sys.argv) > 2 else 'WordleEnv100FullAction-v0' | |
env = gym.make(env_id) | |
n_s = env.observation_space.shape[0] | |
n_a = env.action_space.n | |
words_list = env.words | |
word_width = len(env.words[0]) | |
gnet = Net(n_s, n_a, words_list, word_width) # global network | |
gnet.share_memory() # share the global parameters in multiprocessing | |
opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer | |
global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) | |
# parallel training | |
workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, words_list, word_width, win_ep) for i in range(mp.cpu_count())] | |
[w.start() for w in workers] | |
res = [] # record episode reward to plot | |
while True: | |
r = res_queue.get() | |
if r is not None: | |
res.append(r) | |
else: | |
break | |
[w.join() for w in workers] | |
print("Jugadas:", global_ep.value) | |
print("Ganadas:", win_ep.value) | |
plt.plot(res) | |
plt.ylabel('Moving average ep reward') | |
plt.xlabel('Step') | |
plt.show() | |
evaluate(gnet, env) | |