wordle-solver / a3c /play.py
santit96's picture
Creation of an api module with a rest endpoint /suggest which receives a list of words and states and return a suggestion
1c007bb
raw
history blame
1.58 kB
import os
import torch
from dotenv import load_dotenv
from wordle_env.state import update_from_mask
from .net import GreedyNet
from .utils import v_wrap
def get_play_model_path():
load_dotenv()
model_name = os.getenv('RS_WORDLE_MODEL_NAME')
model_checkpoint_dir = os.path.join('checkpoints', 'best_models')
return os.path.join(model_checkpoint_dir, model_name)
def suggest(
env,
words,
states,
pretrained_model_path
) -> str:
"""
Given a list of words and masks, return the next suggested word
:param agent:
:param env:
:param sequence: History of moves and outcomes until now
:return:
"""
n_s = env.observation_space.shape[0]
n_a = env.action_space.n
env = env.unwrapped
state = env.reset()
words_list = env.words
word_width = len(env.words[0])
net = GreedyNet(n_s, n_a, words_list, word_width)
net.load_state_dict(torch.load(pretrained_model_path))
for word, mask in zip(words, states):
word = word.upper()
mask = list(map(int, mask))
state = update_from_mask(state, word, mask)
return env.words[net.choose_action(v_wrap(state[None, :]))]
def play(net, env):
state = env.reset()
outcomes = []
win = False
for i in range(env.max_turns):
action = net.choose_action(v_wrap(state[None, :]))
state, reward, done, _ = env.step(action)
outcomes.append((env.words[action], reward))
if done:
if reward >= 0:
win = True
break
return win, outcomes