File size: 2,204 Bytes
a777e34
23fd1ff
 
a777e34
 
 
 
 
 
 
23fd1ff
 
 
 
 
 
 
 
 
 
 
 
 
 
a777e34
 
 
 
 
 
 
23fd1ff
 
a777e34
 
 
 
 
 
 
 
 
fa34b1d
a777e34
 
 
 
 
 
 
 
 
fa34b1d
 
a777e34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import numpy as np
import random
import torch
import torch.multiprocessing as mp
from .shared_adam import SharedAdam
from .net import Net
from .worker import Worker


def _set_seed(seed: int = 100) -> None:
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    # When running on the CuDNN backend, two further options must be set
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    # Set a fixed value for the hash seed
    os.environ["PYTHONHASHSEED"] = str(seed)


def train(env, max_ep, model_checkpoint_dir, gamma=0., seed=100, pretrained_model_path=None, save=False, min_reward=9.9, every_n_save=100):
    os.environ["OMP_NUM_THREADS"] = "1"
    if not os.path.exists(model_checkpoint_dir):
        os.makedirs(model_checkpoint_dir)
    n_s = env.observation_space.shape[0]
    n_a = env.action_space.n
    words_list = env.words
    word_width = len(env.words[0])
    # Set global seeds for randoms
    _set_seed(seed)
    gnet = Net(n_s, n_a, words_list, word_width)  # global network
    if pretrained_model_path:
        gnet.load_state_dict(torch.load(pretrained_model_path))
    gnet.share_memory()  # share the global parameters in multiprocessing
    opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999))  # global optimizer
    global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0)

    # parallel training
    workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a,
                      words_list, word_width, win_ep, model_checkpoint_dir, gamma, pretrained_model_path, save, min_reward, every_n_save) for i in range(mp.cpu_count())]
    [w.start() for w in workers]
    res = []  # record episode reward to plot
    while True:
        r = res_queue.get()
        if r is not None:
            res.append(r)
        else:
            break
    [w.join() for w in workers]
    if save:
        torch.save(gnet.state_dict(), os.path.join(model_checkpoint_dir, f'model_{env.unwrapped.spec.id}.pth'))
    return global_ep, win_ep, gnet, res