File size: 1,311 Bytes
3cafd2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from .net import GreedyNet
from .utils import v_wrap
from wordle_env.state import update_from_mask


def suggest(
        env,
        words,
        states,
        pretrained_model_path
) -> str:
    """
    Given a list of words and masks, return the next suggested word

    :param agent:
    :param env:
    :param sequence: History of moves and outcomes until now
    :return:
    """
    n_s = env.observation_space.shape[0]
    n_a = env.action_space.n
    env = env.unwrapped
    state = env.reset()
    words_list = env.words
    word_width = len(env.words[0])
    net = GreedyNet(n_s, n_a, words_list, word_width)
    net.load_state_dict(torch.load(pretrained_model_path))
    for word, mask in zip(words, states):
        word = word.upper()
        mask = list(map(int, mask))
        state = update_from_mask(state, word, mask)
    return env.words[net.choose_action(v_wrap(state[None, :]))]


def play(net, env):
    state = env.reset()
    outcomes = []
    win = False
    for i in range(env.max_turns):
        action = net.choose_action(v_wrap(state[None, :]))
        state, reward, done, _ = env.step(action)
        outcomes.append((env.words[action], reward))
        if done:
            if reward >= 0:
                win = True
            break
    return win, outcomes