santit96's picture
Create the streamlit app that classifies the trash in an image into classes
fa84113
raw
history blame
7.8 kB
import torch
import torch.distributed as dist
import abc
import json
import logging
import time
import numpy as np
from .distributed import synchronize, is_main_process, all_gather_container
from pycocotools.cocoeval import COCOeval
# FIXME experimenting with speedups for OpenImages eval, it's slow
#import pyximport; py_importer, pyx_importer = pyximport.install(pyimport=True)
import effdet.evaluation.detection_evaluator as tfm_eval
#pyximport.uninstall(py_importer, pyx_importer)
_logger = logging.getLogger(__name__)
__all__ = ['CocoEvaluator', 'PascalEvaluator', 'OpenImagesEvaluator', 'create_evaluator']
class Evaluator:
def __init__(self, distributed=False, pred_yxyx=False):
self.distributed = distributed
self.distributed_device = None
self.pred_yxyx = pred_yxyx
self.img_indices = []
self.predictions = []
def add_predictions(self, detections, target):
if self.distributed:
if self.distributed_device is None:
# cache for use later to broadcast end metric
self.distributed_device = detections.device
synchronize()
detections = all_gather_container(detections)
img_indices = all_gather_container(target['img_idx'])
if not is_main_process():
return
else:
img_indices = target['img_idx']
detections = detections.cpu().numpy()
img_indices = img_indices.cpu().numpy()
for img_idx, img_dets in zip(img_indices, detections):
self.img_indices.append(img_idx)
self.predictions.append(img_dets)
def _coco_predictions(self):
# generate coco-style predictions
coco_predictions = []
coco_ids = []
for img_idx, img_dets in zip(self.img_indices, self.predictions):
img_id = self._dataset.img_ids[img_idx]
coco_ids.append(img_id)
if self.pred_yxyx:
# to xyxy
img_dets[:, 0:4] = img_dets[:, [1, 0, 3, 2]]
# to xywh
img_dets[:, 2] -= img_dets[:, 0]
img_dets[:, 3] -= img_dets[:, 1]
for det in img_dets:
score = float(det[4])
if score < .001: # stop when below this threshold, scores in descending order
break
coco_det = dict(
image_id=int(img_id),
bbox=det[0:4].tolist(),
score=score,
category_id=int(det[5]))
coco_predictions.append(coco_det)
return coco_predictions, coco_ids
@abc.abstractmethod
def evaluate(self):
pass
def save(self, result_file):
# save results in coco style, override to save in a alternate form
if not self.distributed or dist.get_rank() == 0:
assert len(self.predictions)
coco_predictions, coco_ids = self._coco_predictions()
json.dump(coco_predictions, open(result_file, 'w'), indent=4)
class CocoEvaluator(Evaluator):
def __init__(self, dataset, neptune=None, distributed=False, pred_yxyx=False):
super().__init__(distributed=distributed, pred_yxyx=pred_yxyx)
self._dataset = dataset.parser
self.coco_api = dataset.parser.coco
self.neptune = neptune
def reset(self):
self.img_indices = []
self.predictions = []
def evaluate(self):
if not self.distributed or dist.get_rank() == 0:
assert len(self.predictions)
coco_predictions, coco_ids = self._coco_predictions()
json.dump(coco_predictions, open('./temp.json', 'w'), indent=4)
results = self.coco_api.loadRes('./temp.json')
coco_eval = COCOeval(self.coco_api, results, 'bbox')
coco_eval.params.imgIds = coco_ids # score only ids we've used
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
metric = coco_eval.stats[0] # mAP 0.5-0.95
if self.neptune:
self.neptune.log_metric('valid/mAP/0.5-0.95IOU', metric)
self.neptune.log_metric('valid/mAP/0.5IOU', coco_eval.stats[1])
if self.distributed:
dist.broadcast(torch.tensor(metric, device=self.distributed_device), 0)
else:
metric = torch.tensor(0, device=self.distributed_device)
dist.broadcast(metric, 0)
metric = metric.item()
self.reset()
return metric
class TfmEvaluator(Evaluator):
""" Tensorflow Models Evaluator Wrapper """
def __init__(
self, dataset, neptune=None, distributed=False, pred_yxyx=False,
evaluator_cls=tfm_eval.ObjectDetectionEvaluator):
super().__init__(distributed=distributed, pred_yxyx=pred_yxyx)
self._evaluator = evaluator_cls(categories=dataset.parser.cat_dicts)
self._eval_metric_name = self._evaluator._metric_names[0]
self._dataset = dataset.parser
self.neptune = neptune
def reset(self):
self._evaluator.clear()
self.img_indices = []
self.predictions = []
def evaluate(self):
if not self.distributed or dist.get_rank() == 0:
for img_idx, img_dets in zip(self.img_indices, self.predictions):
gt = self._dataset.get_ann_info(img_idx)
self._evaluator.add_single_ground_truth_image_info(img_idx, gt)
bbox = img_dets[:, 0:4] if self.pred_yxyx else img_dets[:, [1, 0, 3, 2]]
det = dict(bbox=bbox, score=img_dets[:, 4], cls=img_dets[:, 5])
self._evaluator.add_single_detected_image_info(img_idx, det)
metrics = self._evaluator.evaluate()
_logger.info('Metrics:')
for k, v in metrics.items():
_logger.info(f'{k}: {v}')
if self.neptune:
key = 'valid/mAP/' + str(k).split('/')[-1]
self.neptune.log_metric(key, v)
map_metric = metrics[self._eval_metric_name]
if self.distributed:
dist.broadcast(torch.tensor(map_metric, device=self.distributed_device), 0)
else:
map_metric = torch.tensor(0, device=self.distributed_device)
wait = dist.broadcast(map_metric, 0, async_op=True)
while not wait.is_completed():
# wait without spinning the cpu @ 100%, no need for low latency here
time.sleep(0.5)
map_metric = map_metric.item()
self.reset()
return map_metric
class PascalEvaluator(TfmEvaluator):
def __init__(self, dataset, neptune=None, distributed=False, pred_yxyx=False):
super().__init__(
dataset, neptune, distributed=distributed, pred_yxyx=pred_yxyx, evaluator_cls=tfm_eval.PascalDetectionEvaluator)
class OpenImagesEvaluator(TfmEvaluator):
def __init__(self, dataset, distributed=False, pred_yxyx=False):
super().__init__(
dataset, distributed=distributed, pred_yxyx=pred_yxyx, evaluator_cls=tfm_eval.OpenImagesDetectionEvaluator)
def create_evaluator(name, dataset, neptune=None, distributed=False, pred_yxyx=False):
# FIXME support OpenImages Challenge2019 metric w/ image level label consideration
if 'coco' in name:
return CocoEvaluator(dataset, neptune, distributed=distributed, pred_yxyx=pred_yxyx)
elif 'openimages' in name:
return OpenImagesEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx)
else:
return CocoEvaluator(dataset, neptune, distributed=distributed, pred_yxyx=pred_yxyx)
#return PascalEvaluator(dataset, neptune, distributed=distributed, pred_yxyx=pred_yxyx)