File size: 8,550 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2020 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Argmax matcher implementation.

This class takes a similarity matrix and matches columns to rows based on the
maximum value per column. One can specify matched_thresholds and
to prevent columns from matching to rows (generally resulting in a negative
training example) and unmatched_theshold to ignore the match (generally
resulting in neither a positive or negative training example).

This matcher is used in Fast(er)-RCNN.

Note: matchers are used in TargetAssigners. There is a create_target_assigner
factory function for popular implementations.
"""
import torch
from .matcher import Match
from typing import Optional


def one_hot_bool(x, num_classes: int):
    # for improved perf over PyTorch builtin one_hot, scatter to bool
    onehot = torch.zeros(x.size(0), num_classes, device=x.device, dtype=torch.bool)
    return onehot.scatter_(1, x.unsqueeze(1), 1)


@torch.jit.script
class ArgMaxMatcher(object):  # cannot inherit with torchscript
    """Matcher based on highest value.

    This class computes matches from a similarity matrix. Each column is matched
    to a single row.

    To support object detection target assignment this class enables setting both
    matched_threshold (upper threshold) and unmatched_threshold (lower thresholds)
    defining three categories of similarity which define whether examples are
    positive, negative, or ignored:
    (1) similarity >= matched_threshold: Highest similarity. Matched/Positive!
    (2) matched_threshold > similarity >= unmatched_threshold: Medium similarity.
            Depending on negatives_lower_than_unmatched, this is either
            Unmatched/Negative OR Ignore.
    (3) unmatched_threshold > similarity: Lowest similarity. Depending on flag
            negatives_lower_than_unmatched, either Unmatched/Negative OR Ignore.
    For ignored matches this class sets the values in the Match object to -2.
    """

    def __init__(self,
                 matched_threshold: float,
                 unmatched_threshold: Optional[float] = None,
                 negatives_lower_than_unmatched: bool = True,
                 force_match_for_each_row: bool = False):
        """Construct ArgMaxMatcher.

        Args:
            matched_threshold: Threshold for positive matches. Positive if
                sim >= matched_threshold, where sim is the maximum value of the
                similarity matrix for a given column. Set to None for no threshold.
            unmatched_threshold: Threshold for negative matches. Negative if
                sim < unmatched_threshold. Defaults to matched_threshold
                when set to None.
            negatives_lower_than_unmatched: Boolean which defaults to True. If True
                then negative matches are the ones below the unmatched_threshold,
                whereas ignored matches are in between the matched and unmatched
                threshold. If False, then negative matches are in between the matched
                and unmatched threshold, and everything lower than unmatched is ignored.
            force_match_for_each_row: If True, ensures that each row is matched to
                at least one column (which is not guaranteed otherwise if the
                matched_threshold is high). Defaults to False. See
                argmax_matcher_test.testMatcherForceMatch() for an example.

        Raises:
            ValueError: if unmatched_threshold is set but matched_threshold is not set
                or if unmatched_threshold > matched_threshold.
        """
        if (matched_threshold is None) and (unmatched_threshold is not None):
            raise ValueError('Need to also define matched_threshold when unmatched_threshold is defined')
        self._matched_threshold = matched_threshold
        self._unmatched_threshold: float = 0.
        if unmatched_threshold is None:
            self._unmatched_threshold = matched_threshold
        else:
            if unmatched_threshold > matched_threshold:
                raise ValueError('unmatched_threshold needs to be smaller or equal to matched_threshold')
            self._unmatched_threshold = unmatched_threshold
        if not negatives_lower_than_unmatched:
            if self._unmatched_threshold == self._matched_threshold:
                raise ValueError('When negatives are in between matched and unmatched thresholds, these '
                                 'cannot be of equal value. matched: %s, unmatched: %s',
                                 self._matched_threshold, self._unmatched_threshold)
        self._force_match_for_each_row = force_match_for_each_row
        self._negatives_lower_than_unmatched = negatives_lower_than_unmatched

    def _match_when_rows_are_empty(self, similarity_matrix):
        """Performs matching when the rows of similarity matrix are empty.

        When the rows are empty, all detections are false positives. So we return
        a tensor of -1's to indicate that the columns do not match to any rows.

        Returns:
            matches:  int32 tensor indicating the row each column matches to.
        """
        return -1 * torch.ones(similarity_matrix.shape[1], dtype=torch.long, device=similarity_matrix.device)

    def _match_when_rows_are_non_empty(self, similarity_matrix):
        """Performs matching when the rows of similarity matrix are non empty.

        Returns:
            matches:  int32 tensor indicating the row each column matches to.
        """
        # Matches for each column
        matched_vals, matches = torch.max(similarity_matrix, 0)

        # Deal with matched and unmatched threshold
        if self._matched_threshold is not None:
            # Get logical indices of ignored and unmatched columns as tf.int64
            below_unmatched_threshold = self._unmatched_threshold > matched_vals
            between_thresholds = (matched_vals >= self._unmatched_threshold) & \
                                 (self._matched_threshold > matched_vals)

            if self._negatives_lower_than_unmatched:
                matches = self._set_values_using_indicator(matches, below_unmatched_threshold, -1)
                matches = self._set_values_using_indicator(matches, between_thresholds, -2)
            else:
                matches = self._set_values_using_indicator(matches, below_unmatched_threshold, -2)
                matches = self._set_values_using_indicator(matches, between_thresholds, -1)

        if self._force_match_for_each_row:
            force_match_column_ids = torch.argmax(similarity_matrix, 1)
            force_match_column_indicators = one_hot_bool(force_match_column_ids, similarity_matrix.shape[1])
            force_match_column_mask, force_match_row_ids = torch.max(force_match_column_indicators, 0)
            final_matches = torch.where(force_match_column_mask, force_match_row_ids, matches)
            return final_matches
        else:
            return matches

    def match(self, similarity_matrix):
        """Tries to match each column of the similarity matrix to a row.

        Args:
            similarity_matrix: tensor of shape [N, M] representing any similarity metric.

        Returns:
            Match object with corresponding matches for each of M columns.
        """
        if similarity_matrix.shape[0] == 0:
            return Match(self._match_when_rows_are_empty(similarity_matrix))
        else:
            return Match(self._match_when_rows_are_non_empty(similarity_matrix))

    def _set_values_using_indicator(self, x, indicator, val: int):
        """Set the indicated fields of x to val.

        Args:
            x: tensor.
            indicator: boolean with same shape as x.
            val: scalar with value to set.

        Returns:
            modified tensor.
        """
        indicator = indicator.to(dtype=x.dtype)
        return x * (1 - indicator) + val * indicator