File size: 8,949 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
""" COCO transforms (quick and dirty)

Hacked together by Ross Wightman
"""
import torch
from PIL import Image
import numpy as np
import random
import math

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)


class ImageToNumpy:

    def __call__(self, pil_img, annotations: dict):
        np_img = np.array(pil_img, dtype=np.uint8)
        if np_img.ndim < 3:
            np_img = np.expand_dims(np_img, axis=-1)
        np_img = np.moveaxis(np_img, 2, 0)  # HWC to CHW
        return np_img, annotations


class ImageToTensor:

    def __init__(self, dtype=torch.float32):
        self.dtype = dtype

    def __call__(self, pil_img, annotations: dict):
        np_img = np.array(pil_img, dtype=np.uint8)
        if np_img.ndim < 3:
            np_img = np.expand_dims(np_img, axis=-1)
        np_img = np.moveaxis(np_img, 2, 0)  # HWC to CHW
        return torch.from_numpy(np_img).to(dtype=self.dtype), annotations


def _pil_interp(method):
    if method == 'bicubic':
        return Image.BICUBIC
    elif method == 'lanczos':
        return Image.LANCZOS
    elif method == 'hamming':
        return Image.HAMMING
    else:
        # default bilinear, do we want to allow nearest?
        return Image.BILINEAR


def clip_boxes_(boxes, img_size):
    height, width = img_size
    clip_upper = np.array([height, width] * 2, dtype=boxes.dtype)
    np.clip(boxes, 0, clip_upper, out=boxes)


def clip_boxes(boxes, img_size):
    clipped_boxes = boxes.copy()
    clip_boxes_(clipped_boxes, img_size)
    return clipped_boxes


def _size_tuple(size):
    if isinstance(size, int):
        return size, size
    else:
        assert len(size) == 2
        return size


class ResizePad:

    def __init__(self, target_size: int, interpolation: str = 'bilinear', fill_color: tuple = (0, 0, 0)):
        self.target_size = _size_tuple(target_size)
        self.interpolation = interpolation
        self.fill_color = fill_color

    def __call__(self, img, anno: dict):
        width, height = img.size

        img_scale_y = self.target_size[0] / height
        img_scale_x = self.target_size[1] / width
        img_scale = min(img_scale_y, img_scale_x)
        scaled_h = int(height * img_scale)
        scaled_w = int(width * img_scale)

        new_img = Image.new("RGB", (self.target_size[1], self.target_size[0]), color=self.fill_color)
        interp_method = _pil_interp(self.interpolation)
        img = img.resize((scaled_w, scaled_h), interp_method)
        new_img.paste(img)

        if 'bbox' in anno:
            # FIXME haven't tested this path since not currently using dataset annotations for train/eval
            bbox = anno['bbox']
            bbox[:, :4] *= img_scale
            clip_boxes_(bbox, (scaled_h, scaled_w))
            valid_indices = (bbox[:, :2] < bbox[:, 2:4]).all(axis=1)
            anno['bbox'] = bbox[valid_indices, :]
            anno['cls'] = anno['cls'][valid_indices]

        anno['img_scale'] = 1. / img_scale  # back to original

        return new_img, anno


class RandomResizePad:

    def __init__(self, target_size: int, scale: tuple = (0.1, 2.0), interpolation: str = 'bilinear',
                 fill_color: tuple = (0, 0, 0)):
        self.target_size = _size_tuple(target_size)
        self.scale = scale
        self.interpolation = interpolation
        self.fill_color = fill_color

    def _get_params(self, img):
        # Select a random scale factor.
        scale_factor = random.uniform(*self.scale)
        scaled_target_height = scale_factor * self.target_size[0]
        scaled_target_width = scale_factor * self.target_size[1]

        # Recompute the accurate scale_factor using rounded scaled image size.
        width, height = img.size
        img_scale_y = scaled_target_height / height
        img_scale_x = scaled_target_width / width
        img_scale = min(img_scale_y, img_scale_x)

        # Select non-zero random offset (x, y) if scaled image is larger than target size
        scaled_h = int(height * img_scale)
        scaled_w = int(width * img_scale)
        offset_y = scaled_h - self.target_size[0]
        offset_x = scaled_w - self.target_size[1]
        offset_y = int(max(0.0, float(offset_y)) * random.uniform(0, 1))
        offset_x = int(max(0.0, float(offset_x)) * random.uniform(0, 1))
        return scaled_h, scaled_w, offset_y, offset_x, img_scale

    def __call__(self, img, anno: dict):
        scaled_h, scaled_w, offset_y, offset_x, img_scale = self._get_params(img)

        interp_method = _pil_interp(self.interpolation)
        img = img.resize((scaled_w, scaled_h), interp_method)
        right, lower = min(scaled_w, offset_x + self.target_size[1]), min(scaled_h, offset_y + self.target_size[0])
        img = img.crop((offset_x, offset_y, right, lower))
        new_img = Image.new("RGB", (self.target_size[1], self.target_size[0]), color=self.fill_color)
        new_img.paste(img)

        if 'bbox' in anno:
            # FIXME not fully tested
            bbox = anno['bbox'].copy()  # FIXME copy for debugger inspection, back to inplace
            bbox[:, :4] *= img_scale
            box_offset = np.stack([offset_y, offset_x] * 2)
            bbox -= box_offset
            clip_boxes_(bbox, (scaled_h, scaled_w))
            valid_indices = (bbox[:, :2] < bbox[:, 2:4]).all(axis=1)
            anno['bbox'] = bbox[valid_indices, :]
            anno['cls'] = anno['cls'][valid_indices]

        anno['img_scale'] = 1. / img_scale  # back to original

        return new_img, anno


class RandomFlip:

    def __init__(self, horizontal=True, vertical=False, prob=0.5):
        self.horizontal = horizontal
        self.vertical = vertical
        self.prob = prob

    def _get_params(self):
        do_horizontal = random.random() < self.prob if self.horizontal else False
        do_vertical = random.random() < self.prob if self.vertical else False
        return do_horizontal, do_vertical

    def __call__(self, img, annotations: dict):
        do_horizontal, do_vertical = self._get_params()
        width, height = img.size

        def _fliph(bbox):
            x_max = width - bbox[:, 1]
            x_min = width - bbox[:, 3]
            bbox[:, 1] = x_min
            bbox[:, 3] = x_max

        def _flipv(bbox):
            y_max = height - bbox[:, 0]
            y_min = height - bbox[:, 2]
            bbox[:, 0] = y_min
            bbox[:, 2] = y_max

        if do_horizontal and do_vertical:
            img = img.transpose(Image.ROTATE_180)
            if 'bbox' in annotations:
                _fliph(annotations['bbox'])
                _flipv(annotations['bbox'])
        elif do_horizontal:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
            if 'bbox' in annotations:
                _fliph(annotations['bbox'])
        elif do_vertical:
            img = img.transpose(Image.FLIP_TOP_BOTTOM)
            if 'bbox' in annotations:
                _flipv(annotations['bbox'])

        return img, annotations


def resolve_fill_color(fill_color, img_mean=IMAGENET_DEFAULT_MEAN):
    if isinstance(fill_color, tuple):
        assert len(fill_color) == 3
        fill_color = fill_color
    else:
        try:
            int_color = int(fill_color)
            fill_color = (int_color,) * 3
        except ValueError:
            assert fill_color == 'mean'
            fill_color = tuple([int(round(255 * x)) for x in img_mean])
    return fill_color


class Compose:

    def __init__(self, transforms: list):
        self.transforms = transforms

    def __call__(self, img, annotations: dict):
        for t in self.transforms:
            img, annotations = t(img, annotations)
        return img, annotations


def transforms_coco_eval(
        img_size=224,
        interpolation='bilinear',
        use_prefetcher=False,
        fill_color='mean',
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD):

    fill_color = resolve_fill_color(fill_color, mean)

    image_tfl = [
        ResizePad(
            target_size=img_size, interpolation=interpolation, fill_color=fill_color),
        ImageToNumpy(),
    ]

    assert use_prefetcher, "Only supporting prefetcher usage right now"

    image_tf = Compose(image_tfl)
    return image_tf


def transforms_coco_train(
        img_size=224,
        interpolation='random',
        use_prefetcher=False,
        fill_color='mean',
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD):

    fill_color = resolve_fill_color(fill_color, mean)

    image_tfl = [
        RandomFlip(horizontal=True, prob=0.5),
        RandomResizePad(
            target_size=img_size, interpolation=interpolation, fill_color=fill_color),
        ImageToNumpy(),
    ]

    assert use_prefetcher, "Only supporting prefetcher usage right now"

    image_tf = Compose(image_tfl)
    return image_tf